Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Agric Food Chem ; 72(19): 11094-11110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661523

RESUMO

Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.


Assuntos
Adipócitos , Adipogenia , Quinase 6 Dependente de Ciclina , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Animais , Bovinos/genética , Bovinos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Adipócitos/metabolismo , Adipócitos/citologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Diferenciação Celular , Proliferação de Células , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Apoptose
2.
BMC Genomics ; 25(1): 254, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448814

RESUMO

BACKGROUND: Neddylation, an important post-translational modification (PTM) of proteins, plays a crucial role in follicular development. MLN4924 is a small-molecule inhibitor of the neddylation-activating enzyme (NAE) that regulates various biological processes. However, the regulatory mechanisms of neddylation in rabbit ovarian cells have not been emphasized. Here, the transcriptome and metabolome profiles in granulosa cells (GCs) treated with MLN4924 were utilized to identify differentially expressed genes, followed by pathway analysis to precisely define the altered metabolisms. RESULTS: The results showed that 563 upregulated and 910 downregulated differentially expressed genes (DEGs) were mainly enriched in pathways related to cancer, cell cycle, PI3K-AKT, progesterone-mediated oocyte maturation, and PPAR signaling pathway. Furthermore, we characterized that MLN4924 inhibits PPAR-mediated lipid metabolism, and disrupts the cell cycle by promoting the apoptosis and proliferation of GCs. Importantly, we found the reduction of several metabolites in the MLN4924 treated GCs, including glycerophosphocholine, arachidic acid, and palmitic acid, which was consistent with the deregulation of PPAR signaling pathways. Furthermore, the increased metabolites included 6-Deoxy-6-sulfo-D-glucono-1,5-lactone and N-Acetyl-D-glucosaminyldiphosphodolichol. Combined with transcriptome data analyses, we identified genes that strongly correlate with metabolic dysregulation, particularly those related to glucose and lipid metabolism. Therefore, neddylation inhibition may disrupt the energy metabolism of GCs. CONCLUSIONS: These results provide a foundation for in-depth research into the role and molecular mechanism of neddylation in ovary development.


Assuntos
Ciclopentanos , Receptores Ativados por Proliferador de Peroxissomo , Fosfatidilinositol 3-Quinases , Pirimidinas , Feminino , Animais , Coelhos , Células da Granulosa , Metabolismo dos Lipídeos
3.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 162-173, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38298056

RESUMO

Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.


Assuntos
Proteína Supressora de Tumor p53 , Canal de Ânion 1 Dependente de Voltagem , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Estresse Oxidativo , Apoptose/genética , Trifosfato de Adenosina/metabolismo
4.
J Oncol ; 2022: 4008113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199801

RESUMO

Background: Lymph node metastasis (LNM) is the main route of metastasis in lung adenocarcinoma (LA), and preoperative prediction of LNM in early LA is key for accurate medical treatment. We aimed to establish a preoperative prediction model of LNM of early LA through clinical data mining to reduce unnecessary lymph node dissection, reduce surgical injury, and shorten the operation time. Methods: We retrospectively collected imaging data and clinical features of 1121 patients with early LA who underwent video-assisted thoracic surgery at the First Hospital of China Medical University from 2004 to 2021. Logistic regression analysis was used to select variables and establish the preoperative diagnosis model using random forest classifier (RFC). The prediction results from the test set were used to evaluate the prediction performance of the model. Results: Combining the results of logistic analysis and practical clinical application experience, nine clinical features were included. In the random forest classifier model, when the number of nodes was three and the n-tree value is 500, we obtained the best prediction model (accuracy = 0.9769), with a positive prediction rate of 90% and a negative prediction rate of 98.69%. Conclusion: We established a preoperative prediction model for LNM of early LA using a machine learning random forest method combined with clinical and imaging features. More excellent predictors may be obtained by refining imaging features.

5.
Dis Markers ; 2022: 5946110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958281

RESUMO

The voltage-dependent anion channel 1 (VDAC1), a pore protein located in the outer mitochondrial membrane, has been confirmed to be related to cancer in cell or animal evidence. However, there is no available pan-cancer analysis of VDAC1. Herein, we investigated the potential roles of VDAC1 in tumorigenesis and progression based on the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets. The expression of VDAC1 increased in most cancers, and the upregulation of VDAC1 distinctly correlated with the poor prognosis in patients, including breast invasive carcinoma, cervical squamous cell carcinoma, pancreatic adenocarcinoma, lung adenocarcinoma, and skin cutaneous melanoma. We also found VDAC1 S104 phosphorylation raised in various cancers, such as breast cancer, colon cancer, and lung adenocarcinoma. Moreover, the expression of VDAC1 was related to the estimated infiltration value of cancer-associated fibroblasts in bladder urothelial carcinoma, colon adenocarcinoma, kidney renal papillary cell carcinoma, and testicular germ cell tumors. At last, we showed that VDAC1-related oxidative phosphorylation and metabolic regulation may partially explain its association with tumorigenesis and progression. Taken together, this pan-cancer analysis provides relatively comprehensive information on the potential value of VDAC1 as a prognostic biomarker and therapeutic target.


Assuntos
Adenocarcinoma , Carcinoma de Células de Transição , Neoplasias do Colo , Melanoma , Neoplasias Pancreáticas , Neoplasias Cutâneas , Neoplasias da Bexiga Urinária , Animais , Biomarcadores , Carcinogênese , Proteômica , Neoplasias Cutâneas/genética , Canais de Ânion Dependentes de Voltagem , Melanoma Maligno Cutâneo
6.
Transl Lung Cancer Res ; 11(6): 1051-1068, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35832459

RESUMO

Background: Anlotinib is a new multi-target tyrosine kinase inhibitor (TKI) and has been shown to have antitumor effects and synergistic antitumor effects with immunotherapy only in animal studies and in the 2nd-line treatment in small clinical trials. A real-world study with large sample to compare the efficacy and safety of anlotinib plus immune checkpoint inhibitors (ICIs) with ICIs alone in the multiline treatment of advanced non-small cell lung cancer (NSCLC) was urgently needed. Methods: The data of 535 advanced NSCLC patients were collected from January 1, 2018, to December 31, 2021. The patients were divided into 2 groups: (I) ICI monotherapy (230 patients); (II) ICI + anlotinib (305 patients). After propensity-score matching (PSM) to reduce the effects of biases and confounding variables, the progression-free survival time (PFS), occurrence of adverse events, disease control rate (DCR), and objective response rate (ORR) of the 2 groups were compared. The effects of clinical factors, including age, gender, gene mutations, tumor proportion score, metastases, and combined radiotherapy, were also analyzed. Results: After PSM, the baseline clinical characteristics were well balanced and the 2 group had a good comparability. Patients in the ICI + anlotinib group had significantly longer median PFS in both the 2nd-line treatment (7.73 vs. 4.70 months; P=0.003) and 3rd-line treatment (5.90 vs. 3.37 months; P=0.020), but the difference lacked statistical significance in the 1st-line treatment (8.40 vs. 5.20 months; P=0.229). The overall median PFS of patients in the ICI + anlotinib group was also much longer than that of patients in the ICI monotherapy group (6.37 vs. 3.90 months; P<0.001). The ICI + anlotinib group also tended to have a higher DCR, a higher ORR, and a higher probability of severe adverse drug reactions during the treatment than the ICI monotherapy group, but the differences were not statistically significant. Combining ICI + anlotinib could improve the outcomes of patients with bone metastasis. Conclusions: Anlotinib + ICI therapy could have greater efficacy in the treatment of advanced NSCLC patients than ICI monotherapy. The probability of adverse events might increase in the combined treatment, but could be controlled.

7.
Transl Lung Cancer Res ; 11(5): 817-831, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693279

RESUMO

Background: Classifying the progression pattern had been proved to be momentous for predicting efficacy and guiding treatment in the 1st/2nd generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), while lack evidence in the 3rd generation EGFR-TKIs. This study aimed to classify tumor progression of osimertinib in EGFR+ advanced non-small cell lung cancer (NSCLC), exploring the characteristics and the clinical significance of each progression pattern. Methods: After screening 1,125 lung cancer patients, 168 EGFR T790M+ advanced patients using osimertinib were enrolled and divided into two groups and five clinical progression models according to the time course of the tumor progression. The prognosis and characteristics, such as gender, age, metastases, of each model were analyzed and compared by Kaplan-Meier method, t-test, and linear regression. Results: Complete follow-up data were available for 117 of the 168 patients. Progressive disease (PD) occurred in 89 patients at an average onset of 6.59 months since using osimertinib, with 79.78% of patients experiencing enlargement of some preexisting lesions before PD. Among the five progression models, the 'Rapid Enlargement' (10.11%) model, the 'Rapid New Lesion' model (10.11%), the 'Delayed Enlargement' model (29.21%), the 'Delayed New Lesion' model (15.73%), and the 'Non-targeted Enlargement' model (34.83%), the 'Non-targeted Enlargement' model had the worst prognosis, with a median progression-free survival (mPFS) of 7.1 months (P=0.046). The mPFS of other models was similar, with the largest difference in the time interval between the beginning of osimertinib treatment to the first appearance of target lesion enlargement (Tm-e). Smoking history (P=0.046) and the location of the initial (P=0.048), enlarged (P=0.003), and progressive lesions (P=0.002) affected the progression models, while gender, age, and treatment lines had no effect. The Tm-e was related to the overall disease control time with a correlation coefficient of 0.667 (P=0.000). The appearance of a malignant pleural effusion had an impact on progression. Conclusions: We tried to create a classification system for describing the failure of the third-generation EGFR-TKI osimertinib including two groups, subdivided into five progression models based on the time course of tumor lesion changes. The system might be conducive to predict the prognosis and be potential to assist in selecting subsequent treatment strategies.

8.
Transl Lung Cancer Res ; 11(12): 2521-2538, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36636415

RESUMO

Background: Alectinib is a second generation of ALK-tyrosine kinase inhibitors (ALK-TKIs), which has attracted much attention in the treatment of ALK-positive non-small cell lung cancer (NSCLC). At present, there are few reports on the efficacy and safety of alectinib in Chinese population. Moreover, biomarkers reflecting prognosis and efficacy are exceedingly needed. This study assessed the efficacy of alectinib in patients with ALK-positive NSCLC and analyzed the prognostic factors. Methods: Patients with ALK-positive NSCLC who were confirmed by histopathology or cytology at the Affiliated Cancer Hospital of Nanjing Medical University between October 2018 and October 2021 were enrolled. All patients were treated with alectinib. The clinical characteristics and circulating tumor biomarkers before and after treatment were collected. Kaplan-Meier test was used to calculate the progression-free survival (PFS). Univariate and multivariate Cox regression analyses were used to explore the influencing factors on PFS. Incidence of adverse events was observed. Results: Twenty patients progressed after first-line treatment (n=59) with alectinib, and 21 patients progressed following second-line treatment (n=36) with alectinib. The median PFS of first-line treatment patients was not achieved, and the median PFS of patients undergoing second-line treatment was 15.0 months [95% confidence interval (CI): 0.00-32.23]. The most common adverse reactions were liver dysfunction (37.50%), anemia (37.50%), and constipation (20.83%). The incidence of grade III and above adverse reactions was 6.25%. Univariate analysis showed that neutrophil-to-lymphocyte ratio [NLR; hazard ratio (HR) =0.424, P=0.005] carcinoembryonic antigen (CEA; HR =0.482, P=0.029), lactate dehydrogenase (LDH; HR =0.327, P<0.001), carbohydrate antigen (CA)199 (HR =0.313, P=0.002), and circulating cell free DNA (cfDNA; HR =0.229, P=0.008) concentration levels were associated with PFS, and multivariate analysis showed that NLR (HR =3.058, P=0.034) was independent prognostic factor. After three months of treatment, CEA, CA199, NLR, and LDH, could further predict the prognosis of alectinib treatment. Conclusions: The efficacy and safety of alectinib as a first-line or second-line treatment for ALK-positive NSCLC in keeping with published prospective studies. CEA, CA199, NLR, and LDH within the normal range after three months of treatment were associated with good prognosis. Detection of serum tumor markers can indicate therapeutic success in patients treated with alectinib.

9.
Food Funct ; 12(16): 7198-7213, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34232243

RESUMO

Malvidin (MV) and its derivatives, such as malvidin-3-O-guaiacol (Mv3C) and malvidin-3-O-6-(acrylic acid-(2-hydroxy,4-carboxy-cyclohexanol)ester)-guaiacol (Mv3ACEC), are natural compounds with antioxidant properties. However, the basic mechanisms underlying their functional activities are unclear. In this study, we show that MV, Mv3C, and Mv3ACEC inhibit reactive oxygen species production and malondialdehyde content, promote glutathione peroxidase activity, and increase superoxide dismutase levels in ARPE-19 cells treated with H2O2. Western blotting and immunofluorescence analysis revealed that MV, Mv3C, and Mv3ACEC regulate mitogen-activated protein kinase signal transduction pathways related to endoplasmic reticulum stress. Interestingly, Mv3C and Mv3ACEC showed greater beneficial properties than MV. Our results show that MV and its derivatives have potential as therapeutic compounds for ocular diseases associated with oxidative stress, such as age-related macular degeneration.


Assuntos
Antocianinas/farmacologia , Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos
10.
Sci Rep ; 5: 16107, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26527075

RESUMO

Incarvillea sinensis is a Bignoniaceae plant used to treat rheumatism and relieve pain in traditional Chinese medicine. As a major component of I. sinensis, incarvillateine has shown analgesic activity in mice formalin tests. Using a series of animal models, this study further evaluated the effects of incarvillateine against acute, inflammatory, and neuropathic pain. Incarvillateine (10 or 20 mg/kg, i.p.) dose-dependently attenuated acetic acid-induced writhing, but did not affect thermal threshold in the hot plate test. In a Complete Freund's Adjuvant model, incarvillateine inhibited both thermal hyperalgesia and paw edema, and increased interleukin-1ß levels. Additionally, incarvillateine attenuated mechanical allodynia induced by spared nerve injury or paclitaxel, whereas normal mechanical sensation was not affected. Incarvillateine did not affect locomotor activity and time on the rotarod at analgesic doses, and no tolerance was observed after 7 consecutive daily doses. Moreover, incarvillateine-induced antinociception was attenuated by theophylline, 1,3-dipropyl-8-cyclopentylxanthine, and 3,7-dimethyl-1-propargylxanthine, but not naloxone, indicating that the effects of incarvillateine on chronic pain were related to the adenosine system, but not opioid system. These results indicate that incarvillateine is a novel analgesic compound that is effective against inflammatory and neuropathic pain, and that its effects are associated with activation of the adenosine system.


Assuntos
Adenosina/metabolismo , Alcaloides/farmacologia , Analgésicos/farmacologia , Bignoniaceae/química , Monoterpenos/farmacologia , Alcaloides/química , Alcaloides/uso terapêutico , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Antineoplásicos Fitogênicos/toxicidade , Bignoniaceae/metabolismo , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/prevenção & controle , Adjuvante de Freund/química , Hiperalgesia/etiologia , Hiperalgesia/prevenção & controle , Interleucina-1beta/metabolismo , Medicina Tradicional Chinesa , Camundongos , Monoterpenos/química , Monoterpenos/uso terapêutico , Atividade Motora/efeitos dos fármacos , Paclitaxel/toxicidade , Medição da Dor/efeitos dos fármacos , Teobromina/análogos & derivados , Teobromina/farmacologia , Teofilina/farmacologia , Xantinas/farmacologia
11.
Brain Res ; 1624: 515-524, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26300222

RESUMO

Vesicular glutamate transporters (VGLUTs) control the storage and release of glutamate, which plays a critical role in pain processing. The VGLUT2 isoform has been found to be densely distributed in the nociceptive pathways in supraspinal regions, and VGLUT2-deficient mice exhibit an attenuation of neuropathic pain; these results suggest a possible involvement of VGLUT2 in neuropathic pain. To further examine this, we investigated the temporal changes in VGLUT2 expression in different brain regions as well as changes in glutamate release from thalamic synaptosomes in spared nerve injury (SNI) mice. We also investigated the effects of a VGLUT inhibitor, Chicago Sky Blue 6B (CSB6B), on pain behavior, c-Fos expression, and depolarization-evoked glutamate release in SNI mice. Our results showed a significant elevation of VGLUT2 expression up to postoperative day 1 in the thalamus, periaqueductal gray, and amygdala, followed by a return to control levels. Consistent with the changes in VGLUT2 expression, SNI enhanced depolarization-induced glutamate release from thalamic synaptosomes, while CSB6B treatment produced a concentration-dependent inhibition of glutamate release. Moreover, intracerebroventricular administration of CSB6B, at a dose that did not affect motor function, attenuated mechanical allodynia and c-Fos up-regulation in pain-related brain areas during the early stages of neuropathic pain development. These results demonstrate that changes in the expression of supraspinal VGLUT2 may be a new mechanism relevant to the induction of neuropathic pain after nerve injury that acts through an aggravation of glutamate imbalance.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Neuralgia/patologia , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Corantes/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Neuralgia/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Estatísticas não Paramétricas , Sinaptossomos/metabolismo , Sinaptossomos/patologia , Nervo Tibial/lesões , Nervo Tibial/fisiopatologia , Azul Tripano/farmacologia , Proteína Vesicular 2 de Transporte de Glutamato/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA