Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
1.
Biomed Pharmacother ; 177: 117037, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959602

RESUMO

The inhibition of autophagy is a potential therapeutic strategy to improve the chemosensitivity of triple-negative breast cancer (TNBC). In this study, we demonstrated that a natural terpenoid tanshinone I (TAN) enhanced the effectiveness of paclitaxel (PTX), at least in part, through an autophagy-dependent mechanism against TNBC. In vitro validation demonstrated that the combined therapy resulted in a synergistic decrease in the growth of TNBC cells. The chemosensitizing impact of TAN might be attributed to its inhibition of PTX-induced autophagy in the late phase by obstructing the fusion of autophagosomes and lysosomes, rather than by inhibiting lysosomal function. The findings from KEGG pathway analysis and molecular docking suggested that TAN might impact breast cancer chemoresistance primarily through the PI3K-Akt and MAPK signaling pathways. The non-canonical AKT/p38 MAPK signaling was further validated as the primary mechanism responsible for the inhibition of autophagy by TAN. In vivo study showed that the combined administration of TAN and PTX demonstrated a more significant suppression of tumor growth and autophagic activity compared to PTX monotherapy in the MDA-MB-231 xenograft nude mouse model. The safety evaluation of TAN in a zebrafish model, along with in vitro and in vivo validation, provided experimental and pre-clinical data supporting its potential as a natural adjunctive therapy in TNBC. Overall, this study suggests that the combination of TAN with PTX could provide an effective treatment option for advanced breast cancer, and targeting the AKT/p38 MAPK/late-autophagy signaling axis may be a promising approach for developing therapeutic interventions against TNBC.

2.
Front Mol Biosci ; 11: 1301099, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993839

RESUMO

Introduction: Hepatocellular carcinoma (HCC), which is closely associated with chronicinflammation, is the most common liver cancer and primarily involves dysregulated immune responses in the precancerous microenvironment. Currently, most studies have been limited to HCC incidence. However, the immunopathogenic mechanisms underlying precancerous lesions remain unknown. Methods: We obtained single-cell sequencing data (GSE136103) from two nonalcoholic fatty liver disease (NAFLD) cirrhosis samples and five healthy samples. Using pseudo-time analysis, we systematically identified five different T-cell differentiation states. Ten machine-learning algorithms were used in 81 combinations to integrate the frameworks and establish the best T-cell differentiation-related prognostic signature in a multi-cohort bulk transcriptome analysis. Results: LDHA was considered a core gene, and the results were validated using multiple external datasets. In addition, we validated LDHA expression using immunohistochemistry and flow cytometry. Conclusion: LDHA is a crucial marker gene in T cells for the progression of NAFLD cirrhosis to HCC.

3.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930896

RESUMO

Waste cooking oil's (WCO's) potential as a rejuvenator of aged asphalt has received attention in recent years, with the acid value of WCO affecting its rejuvenation effect. This study explored the rejuvenation effect of WCO with a high acid value on aged asphalt by using molecular dynamics simulation. First, the representative molecules of WCO with a high acid value and asphalt were determined. The rejuvenation effect of WCO on aged asphalt was analyzed by adding different contents of WCO to an aged asphalt model. The effect of WCO on the thermodynamic properties of the aged asphalt was analyzed. The results show that WCO can restore the thermodynamic properties of aged asphalt binder to a certain extent. Regarding the microstructure of rejuvenated asphalt, WCO molecules dispersed around asphaltenes weakened the latter's aggregation and improved the colloidal structure of the aged asphalt. In terms of interface adhesion properties, WCO can improve the adhesion properties between asphalt binder and SiO2, but it has limited influence on water sensitivity. The results allowed us to comprehensively evaluate the rejuvenation effect of WCO with a high acid value on aged asphalt and to explore its rejuvenation mechanism.

4.
Anal Chim Acta ; 1312: 342747, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38834275

RESUMO

BACKGROUND: Lipid droplets (LDs) polarity is intricately linked to diverse biological processes and diseases. The visualization of LDs-polarity is of vital importance but challenging due to the lack of high-specificity, high-sensitivity and large-Stokes shift probes for real-time tracking LDs-polarity in biological systems. RESULTS: Four D-π-A based fluorescent probes (TPA-TCF1-TPA-TCF4) have been developed by combining tricyanofuran (an electron acceptor, A) and triphenylamine (an electron donor, D) derivatives with different terminal groups. Among them, TPA-TCF1 and TPA-TCF4 exhibit excellent polar sensitivity, large Stokes shift (≥182 nm in H2O), and efficient LDs targeting ability. In particular, TPA-TCF4 is capable of monitoring the change of LDs-polarity during ferroptosis, inflammation, apoptosis of cancer cell, and fatty liver. SIGNIFICANCE: All these features render TPA-TCF4 a versatile tool for pharmacodynamic evaluation of anti-cancer drugs, in-depth understanding of the biological effect of LDs on ferroptosis, and medical diagnosis of LDs-polarity related diseases.


Assuntos
Fígado Gorduroso , Ferroptose , Corantes Fluorescentes , Inflamação , Gotículas Lipídicas , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Humanos , Ferroptose/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Corantes Fluorescentes/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Animais , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Estrutura Molecular
5.
Artigo em Inglês | MEDLINE | ID: mdl-38835647

RESUMO

Background: Triple-negative breast cancer (TNBC) is the most aggressive malignancy. Psychological distress and elevated CXCL1 level have been reported to be closely associated with the poor prognosis and quality of life of patients with TNBC. In preclinical studies using xenograft mouse models, XIAOPI formula, a nationally approved drug prescribed to patients at high risk for breast cancer, inhibited CXCL1 expression and improved survival. Traditional Chinese medicine has unique advantages in improving patients' emotional disorders and quality of life. However, the impact of XIAOPI formula on the serum level of CXCL1, psychological distress, and quality of life among patients with TNBC is currently unknown. Methods: In this study, we designed a randomized, double-blind, placebo-controlled trial. Patients with TNBC were randomly assigned to receive either the XIAOPI formula or a placebo for three months. The primary outcomes include serum CXCL1 expression, Self-Rating Anxiety Scale (SAS), and the Self-Rating Depression Scale (SDS). Secondary outcomes included the Pittsburgh Sleep Quality Index (PSQI) and the Functional Assessment of Cancer Therapy-Breast (FACT-B). Results: A total of 60 patients with TNBC were enrolled in the investigation. The results showed that the XIAOPI formula significantly decreased CXCL1 expression compared with the control group. Moreover, in comparison to the placebo, the XIAOPI formula increased FACT-B scores while decreasing SDS, SAS, and PSQI scores. Conclusion: In patients with TNBC, XIAOPI formula may be effective in reducing CXCL1 levels, enhancing psychological well-being, and quality of life. While our research offers a natural alternative therapy that may enhance the prognosis of TNBC, future validation of its therapeutic effects will require large-scale, long-term clinical trials. Clinical Registration Number: Registration website: www.chictr.org.cn, Registration date: 2018-1-19, Registration number: ChiCTR1800014535.

6.
Biomater Res ; 28: 0038, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868091

RESUMO

Immunotherapy shows great therapeutic potential for long-term protection against tumor relapse and metastasis. Innate immune sensors, such as cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING), dissolve DNA and induce type I interferon. Through activation of the cGAS/STING pathway, chemotherapy drugs and reversine (REV) may provide synergetic anti-tumor effects. Here, we prepared drug-loaded cell membrane hybrid lipid nanovesicles (LEVs) (designated LEV@DOX@REV) by fusion of cell membranes, phospholipids, doxorubicin (DOX), and REV, to realize accurate delivery to tumors and chemo-immunotherapy. The cell membranes of LEVs confer "homing" abilities. DOX can induce immunogenic cell death as a result of its specific immunomodulatory effects, which promotes the maturation of immune cells and improves the microenvironment of the immune system. REV is proven to efficiently activate cGAS/STING signaling, thereby enhancing the immune system. The antitumor efficacy of LEV@DOX@REV was evaluated in a 4T1 subcutaneous tumor xenograft model, a distant metastatic tumor model, and a liver metastatic tumor model. LEV@DOX@REV facilitated the infiltration of cytotoxic T lymphocytes within tumors, increased the secretion of proinflammatory cytokines, and modified the tumor microenvironment. In conclusion, LEV@DOX@REV displayed favorable antitumor effects and extended the survival of tumor-bearing mice. We therefore successfully developed nanoparticles capable of enhancing immune activation that have potential therapeutic applications for cancer immunotherapy.

7.
Chin J Nat Med ; 22(6): 501-514, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906598

RESUMO

Prostate cancer (PCa) is the second most common malignancy among men globally. The Fu-Zheng-Yi-Liu (FZYL) Formula has been widely utilized in the treatment of PCa. This study investigates whether the FZYL Formula can inhibit PCa by targeting the TAMs/CCL5 pathway. We conducted in vitro co-cultures and in vivo co-injections of PCa cells and TAMs to mimic their interaction. Results showed that the FZYL Formula significantly reduced the proliferation, colony formation, subpopulations of PCSCs, and sphere-formation efficacy of PCa cells, even in the presence of TAM co-culture. Additionally, the Formula markedly decreased the migration, invasion, and epithelial-mesenchymal transition (EMT) of PCa cells induced by TAMs. The FZYL Formula also reversed M2 phenotype polarization in TAMs and dose-dependently reduced their CCL5 expression and secretion, with minimal cytotoxicity observed. Mechanistic studies confirmed that the TAMs/CCL5 axis is a critical target of the FZYL Formula, as the addition of exogenous CCL5 partially reversed the formula's inhibitory effects on PCSCs self-renewal in the co-culture system. Importantly, the Formula also significantly inhibited the growth of PCa xenografts, bone metastasis, and PCSCs activity in vivo by targeting the TAMs/CCL5 pathway. Overall, this study not only elucidates the immunomodulatory mechanism of the FZYL Formula in PCa therapy but also highlights the TAMs/CCL5 axis as a promising therapeutic target.


Assuntos
Quimiocina CCL5 , Medicamentos de Ervas Chinesas , Células-Tronco Neoplásicas , Neoplasias da Próstata , Microambiente Tumoral , Macrófagos Associados a Tumor , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Masculino , Humanos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Metástase Neoplásica , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Camundongos Nus
8.
ACS Nano ; 18(26): 17267-17281, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38871478

RESUMO

Intrinsic or acquired resistance to chemical drugs severely limits their therapeutic efficacy in cancer treatment. Various intracellular antioxidant molecules, particularly glutathione (GSH), play a crucial role in maintaining intracellular redox homeostasis by mitigating the overproduced reactive oxygen species (ROS) due to rapid cell proliferation. Notably, these antioxidants also eliminate chemical-drug-induced ROS, eventually diminishing their cytotoxicity and rendering them less effective. In this study, we combined erastin, a GSH biosynthesis inhibitor, with 2'-deoxy-5-fluorouridine 5'-monophosphate sodium salt (FdUMP), an ROS-based drug, to effectively disrupt intracellular redox homeostasis and reverse chemotherapy resistance. Therefore, efficient ferroptosis and apoptosis were simultaneously induced for enhanced antitumor effects. Additionally, we employed small interfering RNA targeting PD-L1 (siPD-L1) as a third agent to block immune-checkpoint recognition by CD8+ T cells. The highly immunogenic cell peroxidates or damage-associated molecular patterns (DAMPs) induced by erastin acted synergistically with downregulated PD-L1 to enhance the antitumor effects. To codeliver these three drugs simultaneously and efficiently, we designed GE11 peptide-modified lipid nanoparticles (LNPs) containing calcium phosphate cores to achieve high encapsulation efficiencies. In vitro studies verified its enhanced cytotoxicity, efficient intracellular ROS induction and GSH/GPX4 downregulation, substantial lipid peroxidation product accumulation, and mitochondrial depolarization. In vivo, this formulation effectively accumulated at tumor sites and achieved significant tumor inhibition in subcutaneous colon cancer (CRC) mouse models with a maximum tumor inhibition rate of 83.89% at a relatively low dose. Overall, a strategy to overcome clinical drug resistance was verified in this study by depleting GSH and activating adaptive immunity.


Assuntos
Antineoplásicos , Apoptose , Antígeno B7-H1 , Regulação para Baixo , Ferroptose , Nanopartículas , Ferroptose/efeitos dos fármacos , Animais , Humanos , Camundongos , Nanopartículas/química , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Regulação para Baixo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Lipídeos/química , Proliferação de Células/efeitos dos fármacos , Feminino , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Lipossomos
9.
Heliyon ; 10(7): e27768, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38690000

RESUMO

Background: Primary tumor resection is associated with survival benefits in patients with metastatic lung adenocarcinoma (mLUAD). However, there are no established methods to determine which individuals would benefit from surgery. Therefore, we developed a model to predict the patients who are likely to benefit from surgery in terms of survival. Methods: Data on patients with mLUAD were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. Depending on whether surgery was performed on the primary tumor, patients were categorized into two groups: cancer-directed surgery (CDS) and no-cancer-directed surgery (No-CDS). Propensity Score Matching (PSM) was utilized to address bias between the CDS and No-CDS groups. The prognostic impact of CDS was assessed using Kaplan-Meier analysis and Cox proportional hazard models. Subsequently, we constructed a nomogram to predict the potential for surgical benefits based on multivariable logistic regression analysis using preoperative factors. Results: A total of 89,039 eligible patients were identified, including 6.4% (5705) who underwent surgery. Following PSM, the CDS group demonstrated a significantly longer median overall survival (mOS) compared with the No-CDS group (23 [21-25] vs. 7 [7-8] months; P < 0.001). The nomogram showed robust performance in both the training and validation sets (area under the curve [AUC]: 0.698 and 0.717, respectively), and the calibration curves exhibited high consistency. The nomogram proved clinically valuable according to decision curve analysis (DCA). According to this nomogram, surgical patients were categorized into two groups: no-benefit candidates and benefit candidates groups. Compared with the no-benefit candidate group, the benefit candidate group was associated with longer survival (mOS: 25 vs. 6 months, P < 0.001). Furthermore, no difference in survival was observed between the no-benefit candidates and the no-surgery groups (mOS: 6 vs. 7 months, P = 0.9). Conclusions: A practical nomogram was developed to identify optimal CDS candidates among patients with mLUAD.

10.
Life Sci ; 348: 122687, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38718856

RESUMO

AIMS: Checkpoint blockade immunotherapy is a promising therapeutic modality that has revolutionized cancer treatment; however, the therapy is only effective on a fraction of patients due to the tumor environment. In tumor immunotherapy, the cGAS-STING pathway is a crucial intracellular immune response pathway. Therefore, this study aimed to develop an immunotherapy strategy based on the cGAS-STING pathway. MATERIALS AND METHODS: The physicochemical properties of the nanoparticles EM@REV@DOX were characterized by TEM, DLS, and WB. Subcutaneous LLC xenograft tumors were used to determine the biodistribution, antitumor efficacy, and immune response. Blood samples and tissues of interest were harvested for hematological analysis and H&E staining. SIGNIFICANCE: Overall, our designed nanovesicles provide a new perspective on tumor immunotherapy by ICD and cGAS-STING pathway, promoting DCs maturation, macrophage polarization, and activating T cells, offering a meaningful strategy for accelerating the clinical development of immunotherapy. KEY FINDINGS: EM@REV@DOX accumulated in the tumor site through EPR and homing targeting effect to release REV and DOX, resulting in DNA damage and finally activating the cGAS-STING pathway, thereby promoting DCs maturation, macrophage polarization, and activating T cells. Additionally, EM@REV@DOX increased the production of pro-inflammatory cytokines (e.g., TNF-α and IFN-ß). As a result, EM@REV@DOX was effective in treating tumor-bearing mice and prolonged their lifespans. When combined with αPD-L1, EM@REV@DOX significantly inhibited distant tumor growth, extended the survival of mice, and prevented long-term postoperative tumor metastasis, exhibiting great potential in antitumor immunotherapy.


Assuntos
Imunoterapia , Proteínas de Membrana , Nanopartículas , Nucleotidiltransferases , Animais , Nucleotidiltransferases/metabolismo , Camundongos , Proteínas de Membrana/metabolismo , Imunoterapia/métodos , Nanopartículas/química , Humanos , Transdução de Sinais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Morte Celular Imunogênica/efeitos dos fármacos
11.
Cancer ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38781433

RESUMO

BACKGROUND: Effective systemic therapy remains limited for advanced esophageal squamous cell carcinoma (ESCC) and hepatocellular carcinoma (HCC), particularly after prior failed treatment with immune checkpoint inhibitors (ICIs). Theoretically, a combination of tyrosine kinase inhibitors (TKIs) with ICIs may restore immunotherapy sensitivity. METHODS: In this phase 1b study, patients received AL2846, an antiangiogenic TKI with multiple targets (c-MET, VEGFR1, c-KIT, Axl, RET, KDR, and VEGFR3), in combination with an anti-PD-L1 antibody (TQB2450) until disease progression, intolerable toxicity, death, or discontinuation for any cause. The primary end points included overall response rate (ORR) and safety, with secondary end points encompassing progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and duration of response. RESULTS: Between November 2021 and September 2022, 18 patients with ESCC and 15 patients with HCC, whose ORR was 11.1% (95% confidence interval [CI], 3.1%-32.8%) and 0%, respectively, were enrolled. Adverse events (AEs) of any grade and treatment-related AEs were documented in 32 patients (97.0%) and 31 patients (93.9%), respectively. Grade 3 or higher AEs were observed in 10 patients (30.3%), with vomiting (6.1%) and infectious pneumonia (9.1%) being the most prevalent. Median PFS and OS values were 3.22 months (95% CI, 1.35-5.68 months) and 5.98 months (95% CI, 3.71-8.87 months), respectively, in patients with ESCC, and 5.55 months (95% CI, 2.66 months to not evaluable [NE]) and 16.72 months (95% CI, 4.86 months to NE), respectively, in patients with HCC. The DCRs were 66.7% (95% CI, 43.75%-83.72%) in patients with ESCC and 73.3% (95% CI, 48.05%-89.10%) in patients with HCC. CONCLUSIONS: Combined TQB2450 and AL2846 therapy exhibited a favorable safety profile in immunotherapy-refractory patients with advanced ESCC and HCC.

12.
JAMA ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820549

RESUMO

Importance: For patients with non-small cell lung cancer whose disease progressed while receiving EGFR tyrosine kinase inhibitor (EGFR-TKI) therapy, particularly third-generation TKIs, optimal treatment options remain limited. Objective: To compare the efficacy of ivonescimab plus chemotherapy with chemotherapy alone for patients with relapsed advanced or metastatic non-small cell lung cancer with the epidermal growth factor receptor (EGFR) variant. Design, Setting, and Participants: Double-blind, placebo-controlled, randomized, phase 3 trial at 55 sites in China enrolled participants from January 2022 to November 2022; a total of 322 eligible patients were enrolled. Interventions: Participants received ivonescimab (n = 161) or placebo (n = 161) plus pemetrexed and carboplatin once every 3 weeks for 4 cycles, followed by maintenance therapy of ivonescimab plus pemetrexed or placebo plus pemetrexed. Main Outcomes and Measures: The primary end point was progression-free survival in the intention-to-treat population assessed by an independent radiographic review committee (IRRC) per Response Evaluation Criteria in Solid Tumors version 1.1. The results of the first planned interim analysis are reported. Results: Among 322 enrolled patients in the ivonescimab and placebo groups, the median age was 59.6 vs 59.4 years and 52.2% vs 50.9% of patients were female. As of March 10, 2023, median follow-up time was 7.89 months. Median progression-free survival was 7.1 (95% CI, 5.9-8.7) months in the ivonescimab group vs 4.8 (95% CI, 4.2-5.6) months for placebo (difference, 2.3 months; hazard ratio [HR], 0.46 [95% CI, 0.34-0.62]; P < .001). The prespecified subgroup analysis showed progression-free survival benefit favoring patients receiving ivonescimab over placebo across almost all subgroups, including patients whose disease progressed while receiving third-generation EGFR-TKI therapy (HR, 0.48 [95% CI 0.35-0.66]) and those with brain metastases (HR, 0.40 [95% CI, 0.22-0.73]). The objective response rate was 50.6% (95% CI, 42.6%-58.6%) with ivonescimab and 35.4% (95% CI, 28.0%-43.3%) with placebo (difference, 15.6% [95% CI, 5.3%-26.0%]; P = .006). The median overall survival data were not mature; at data cutoff, 69 patients (21.4%) had died. Grade 3 or higher treatment-emergent adverse events occurred in 99 patients (61.5%) in the ivonescimab group vs 79 patients (49.1%) in the placebo group, the most common of which were chemotherapy-related. Grade 3 or higher immune-related adverse events occurred in 10 patients (6.2%) in the ivonescimab group vs 4 (2.5%) in the placebo group. Grade 3 or higher vascular endothelial growth factor-related adverse events occurred in 5 patients (3.1%) in the ivonescimab group vs 4 (2.5%) in the placebo group. Conclusions: Ivonescimab plus chemotherapy significantly improved progression-free survival with tolerable safety profile in TKI-treated non-small cell lung cancer. Trial Registration: ClinicalTrials.gov Identifier: NCT05184712.

13.
Food Chem ; 452: 139542, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38728898

RESUMO

This study investigated the effects of ethanol, 1,2-propanediol, and glycerol on the structure and aggregation behavior of silver carp (Hypophthalmichthys molitrix) myosin. All alcohols induced extensive alteration in the tertiary structure of myosin. Both ethanol and 1,2-propanediol further promoted an increase in the content of ß-sheets in myosin and induced myosin aggregation. While glycerol had almost no impact on the secondary structure of myosin. Molecular dynamics simulations revealed that increasing the concentration of ethanol and 1,2-propanediol affected the overall structural changes in the myosin heavy chain (MHC), while glycerol exerted a more pronounced effect on the MHC tail when compared to the MHC head. Disruption of the hydration layers induced by ethanol and 1,2-propanediol contributed to local structural changes in myosin. Glycerol at a concentration of 20% induced the formation of a larger hydration layer around the MHC tail, which facilitated the stabilization of the protein structure.


Assuntos
Carpas , Etanol , Proteínas de Peixes , Glicerol , Simulação de Dinâmica Molecular , Animais , Carpas/metabolismo , Glicerol/química , Glicerol/farmacologia , Etanol/química , Etanol/farmacologia , Proteínas de Peixes/química , Propilenoglicol/química , Miosinas/química , Miosinas/metabolismo , Agregados Proteicos , Estrutura Secundária de Proteína
14.
Sci Total Environ ; 931: 172919, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703857

RESUMO

Species in estuaries tend to undergo both cadmium (Cd) and low salinity stress. However, how low salinity affects the Cd toxicity has not been fully understood. Investigating the impacts of low salinity on the dose-response relationships between Cd and biological endpoints has potential to enhance our understanding of the combined effects of low salinity and Cd. In this work, changes in the transcriptomes of Pacific oysters were analyzed following exposure to Cd (5, 20, 80 µg/L Cd2+) under normal (31.4 psu) and low (15.7 psu) salinity conditions, and then the dose-response relationship between Cd and transcriptome was characterized in a high-throughput manner. The benchmark dose (BMD) of gene expression, as a point of departure (POD), was also calculated based on the fitted dose-response model. We found that low salinity treatment significantly influenced the dose-response relationships between Cd and transcripts in oysters indicated by altered dose-response curves. In details, a total of 219 DEGs were commonly fitted to best models under both normal and low salinity conditions. Nearly three quarters of dose-response curves varied with salinity condition. Some monotonic dose-response curves in normal salinity condition even were replaced by nonmonotonic curves in low salinity condition. Low salinity treatment decreased the PODs of differentially expressed genes induced by Cd, suggesting that gene differential expression was more prone to being triggered by Cd in low salinity condition. The changed sensitivity to Cd in low salinity condition should be taken into consideration when using oyster as an indicator to assess the ecological risk of Cd pollution in estuaries.


Assuntos
Cádmio , Relação Dose-Resposta a Droga , Salinidade , Transcriptoma , Poluentes Químicos da Água , Animais , Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Transcriptoma/efeitos dos fármacos
15.
Nat Commun ; 15(1): 3860, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719824

RESUMO

Dual blocker therapy (DBT) has the enhanced antitumor benefits than the monotherapy. Yet, few effective biomarkers are developed to monitor the therapy response. Herein, we investigate the DBT longitudinal plasma proteome profiling including 113 longitudinal samples from 22 patients who received anti-PD1 and anti-CTLA4 DBT therapy. The results show the immune response and cholesterol metabolism are upregulated after the first DBT cycle. Notably, the cholesterol metabolism is activated in the disease non-progressive group (DNP) during the therapy. Correspondingly, the clinical indicator prealbumin (PA), free triiodothyronine (FT3) and triiodothyronine (T3) show significantly positive association with the cholesterol metabolism. Furthermore, by integrating proteome and radiology approach, we observe the high-density lipoprotein partial remodeling are activated in DNP group and identify a candidate biomarker APOC3 that can reflect DBT response. Above, we establish a machine learning model to predict the DBT response and the model performance is validated by an independent cohort with balanced accuracy is 0.96. Thus, the plasma proteome profiling strategy evaluates the alteration of cholesterol metabolism and identifies a panel of biomarkers in DBT.


Assuntos
Colesterol , Proteoma , Humanos , Colesterol/sangue , Colesterol/metabolismo , Proteoma/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/sangue , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/sangue , Biomarcadores/sangue , Idoso , Tri-Iodotironina/sangue , Aprendizado de Máquina , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/sangue , Neoplasias/metabolismo , Proteômica/métodos
16.
Microb Pathog ; 192: 106713, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38810765

RESUMO

Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.


Assuntos
Mutagênese Sítio-Dirigida , Vírus da Doença de Newcastle , Proteínas Virais de Fusão , Internalização do Vírus , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Animais , Substituição de Aminoácidos , Linhagem Celular , Mutação , Proteólise , Fusão de Membrana
17.
Artigo em Inglês | MEDLINE | ID: mdl-38568402

RESUMO

PURPOSE: Segmentation of ossified ligamentum flavum (OLF) plays a crucial role in developing computer-assisted, image-guided systems for decompressive thoracic laminectomy. Manual segmentation is time-consuming, tedious, and label-intensive. It also suffers from inter- and intra-observer variability. Automatic segmentation is highly desired. METHODS: A two-stage, localization context-aware framework is developed for automatic segmentation of ossified ligamentum flavum. In the first stage, localization heatmaps of OLFs are obtained via incremental regression. In the second stage, the obtained heatmaps are then treated as the localization context for a segmentation U-Net. Our framework can directly map a whole volumetic data to its volume-wise labels. RESULTS: We designed and conducted comprehensive experiments on datasets of 100 patients to evaluate the performance of the proposed method. Our method achieved an average Dice similarity coefficient of 61.2 ± 7.6%, an average surface distance of 1.1 ± 0.5 mm, and an average positive predictive value of 62.0 ± 12.8%. CONCLUSION: To the best knowledge of the authors, this is the first study aiming for automatic segmentation of ossified ligamentum flavum. Results from the comprehensive experiments demonstrate the superior performance of the proposed method over the state-of-the-art methods.

18.
Clin Transl Oncol ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642258

RESUMO

BACKGROUND: Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS: In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS: In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS: These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.

19.
Cell Oncol (Dordr) ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656573

RESUMO

PURPOSE: Increased expression of leukocyte immunoglobulin-like receptor subfamily B member 2 (LILRB2) is associated with immune evasion in breast cancer (BC). The aim of this study to elucidate the role of LILRB2 in BC progression. METHODS: LILRB2 expression in tumor tissues was detected by immunohistochemical staining. Human leukocyte antigen A (HLA-A) expression in BC cells was detected by Western blotting, and HLA-A ubiquitination was detected by immunoprecipitation and histidine pulldown assay. An in-situ tumor model was established in nude BALB/c mice to verify the role of LILRB2 in immune escape. Finally, the functions and potential mechanisms of LILRB2 in BC progression were explored using in silico data. RESULTS: LILRB2 was upregulated in BC tissues and cells, and correlated positively with poor prognosis. LILRB2 promoted BC progression by downregulating HLA-A expression. Mechanistically, LILRB2 facilitates the ubiquitination and subsequent degradation of HLA-A by promoting the interaction between the ubiquitin ligase membrane-associated ring finger protein 9 (MARCH9) and HLA-A. In syngeneic graft mouse models, LILRB2-expressing BC cells evaded CD8 + T cells and inhibited the secretion of cytokines by the cytotoxic CD8 + T cells. CONCLUSION: LILRB2 downregulates HLA-A to promote immune evasion in BC cells and is a promising new target for BC treatment.

20.
J Exp Clin Cancer Res ; 43(1): 121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654356

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and chemotherapy still serves as the cornerstone treatment functioning by inducing cytotoxic cell death. Notably, emerging evidence suggests that dying cell-released signals may induce cancer progression and metastasis by modulating the surrounding microenvironment. However, the underlying molecular mechanisms and targeting strategies are yet to be explored. METHODS: Apoptotic TNBC cells induced by paclitaxel or adriamycin treatment were sorted and their released extracellular vesicles (EV-dead) were isolated from the cell supernatants. Chemokine array analysis was conducted to identify the crucial molecules in EV-dead. Zebrafish and mouse xenograft models were used to investigate the effect of EV-dead on TNBC progression in vivo. RESULTS: It was demonstrated that EV-dead were phagocytized by macrophages and induced TNBC metastasis by promoting the infiltration of immunosuppressive PD-L1+ TAMs. Chemokine array identified CXCL1 as a crucial component in EV-dead to activate TAM/PD-L1 signaling. CXCL1 knockdown in EV-dead or macrophage depletion significantly inhibited EV-dead-induced TNBC growth and metastasis. Mechanistic investigations revealed that CXCL1EV-dead enhanced TAM/PD-L1 signaling by transcriptionally activating EED-mediated PD-L1 promoter activity. More importantly, TPCA-1 (2-[(aminocarbonyl) amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide) was screened as a promising inhibitor targeting CXCL1 signals in EVs to enhance paclitaxel chemosensitivity and limit TNBC metastasis without noticeable toxicities. CONCLUSIONS: Our results highlight CXCL1EV-dead as a novel dying cell-released signal and provide TPCA-1 as a targeting candidate to improve TNBC prognosis.


Assuntos
Antígeno B7-H1 , Quimiocina CXCL1 , Vesículas Extracelulares , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Vesículas Extracelulares/metabolismo , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Macrófagos Associados a Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA