Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38619792

RESUMO

PURPOSE: The internal carotid artery (ICA) is a region with a high incidence for small- and medium-sized saccular aneurysms. However, the treatment relies heavily on the surgeon's experience to achieve optimal outcome. Although the finite element method (FEM) and computational fluid dynamics can predict the postoperative outcomes, due to the computational complexity of traditional methods, there is an urgent need for investigating the fast but versatile approaches related to numerical simulations of flow diverters (FDs) deployment coupled with the hemodynamic analysis to determine the treatment plan. METHODS: We collected the preoperative and postoperative data from 34 patients (29 females, 5 males; mean age 55.74 ± 9.98 years) who were treated with a single flow diverter for small- to medium-sized intracranial saccular aneurysms on the ICA. The constraint-based virtual deployment (CVD) method is proposed to simulate the FDs expanding outward along the vessel centerline while be constrained by the inner wall of the vessel. RESULTS: The results indicate that there were no significant differences in the reduction rates of wall shear stress and aneurysms neck velocity between the FEM and methods. However, the solution time of CVD was greatly reduced by 98%. CONCLUSION: In the typical location of small- and medium-sized saccular aneurysms, namely the ICA, our virtual FDs deployment simulation effectively balances the computational accuracy and efficiency. Combined with hemodynamics analysis, our method can accurately represent the blood flow changes within the lesion region to assist surgeons in clinical decision-making.

2.
J Comput Assist Tomogr ; 48(3): 498-507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38438336

RESUMO

OBJECTIVE: The preoperative prediction of the overall survival (OS) status of patients with head and neck cancer (HNC) is significant value for their individualized treatment and prognosis. This study aims to evaluate the impact of adding 3D deep learning features to radiomics models for predicting 5-year OS status. METHODS: Two hundred twenty cases from The Cancer Imaging Archive public dataset were included in this study; 2212 radiomics features and 304 deep features were extracted from each case. The features were selected by univariate analysis and the least absolute shrinkage and selection operator, and then grouped into a radiomics model containing Positron Emission Tomography /Computed Tomography (PET/CT) radiomics features score, a deep model containing deep features score, and a combined model containing PET/CT radiomics features score +3D deep features score. TumorStage model was also constructed using initial patient tumor node metastasis stage to compare the performance of the combined model. A nomogram was constructed to analyze the influence of deep features on the performance of the model. The 10-fold cross-validation of the average area under the receiver operating characteristic curve and calibration curve were used to evaluate performance, and Shapley Additive exPlanations (SHAP) was developed for interpretation. RESULTS: The TumorStage model, radiomics model, deep model, and the combined model achieved areas under the receiver operating characteristic curve of 0.604, 0.851, 0.840, and 0.895 on the train set and 0.571, 0.849, 0.832, and 0.900 on the test set. The combined model showed better performance of predicting the 5-year OS status of HNC patients than the radiomics model and deep model. The combined model was shown to provide a favorable fit in calibration curves and be clinically useful in decision curve analysis. SHAP summary plot and SHAP The SHAP summary plot and SHAP force plot visually interpreted the influence of deep features and radiomics features on the model results. CONCLUSIONS: In predicting 5-year OS status in patients with HNC, 3D deep features could provide richer features for combined model, which showed outperformance compared with the radiomics model and deep model.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Nomogramas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Masculino , Feminino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Prognóstico , Idoso , Imageamento Tridimensional/métodos , Adulto , Estudos Retrospectivos , Radiômica
3.
Thorac Cancer ; 14(19): 1802-1811, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183577

RESUMO

BACKGROUND: Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information. METHODS: Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics. RESULTS: The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models. CONCLUSION: The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Tuberculose , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos de Viabilidade , Reprodutibilidade dos Testes , Neoplasias Pulmonares/diagnóstico por imagem
4.
EJNMMI Res ; 13(1): 14, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779997

RESUMO

OBJECTIVES: By comparing the prognostic performance of 18F-FDG PET/CT-based radiomics combining dose features [Includes Dosiomics feature and the dose volume histogram (DVH) features] with that of conventional radiomics in head and neck cancer (HNC), multidimensional prognostic models were constructed to investigate the overall survival (OS) in HNC. MATERIALS AND METHODS: A total of 220 cases from four centres based on the Cancer Imaging Archive public dataset were used in this study, 2260 radiomics features and 1116 dosiomics features and 8 DVH features were extracted for each case, and classified into seven different models of PET, CT, Dose, PET+CT, PET+Dose, CT+Dose and PET+CT+Dose. Features were selected by univariate Cox and Spearman correlation coefficients, and the selected features were brought into the least absolute shrinkage and selection operator (LASSO)-Cox model. A nomogram was constructed to visually analyse the prognostic impact of the incorporated dose features. C-index and Kaplan-Meier curves (log-rank analysis) were used to evaluate and compare these models. RESULTS: The cases from the four centres were divided into three different training and validation sets according to the hospitals. The PET+CT+Dose model had C-indexes of 0.873 (95% CI 0.812-0.934), 0.759 (95% CI 0.663-0.855) and 0.835 (95% CI 0.745-0.925) in the validation set respectively, outperforming the rest models overall. The PET+CT+Dose model did well in classifying patients into high- and low-risk groups under all three different sets of experiments (p < 0.05). CONCLUSION: Multidimensional model of radiomics features combining dosiomics features and DVH features showed high prognostic performance for predicting OS in patients with HNC.

5.
Elife ; 112022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454214

RESUMO

Amino acid (AA) metabolism in vascular endothelium is important for sprouting angiogenesis. SLC38A5 (solute carrier family 38 member 5), an AA transporter, shuttles neutral AAs across cell membrane, including glutamine, which may serve as metabolic fuel for proliferating endothelial cells (ECs) to promote angiogenesis. Here, we found that Slc38a5 is highly enriched in normal retinal vascular endothelium, and more specifically, in pathological sprouting neovessels. Slc38a5 is suppressed in retinal blood vessels from Lrp5-/- and Ndpy/- mice, both genetic models of defective retinal vascular development with Wnt signaling mutations. Additionally, Slc38a5 transcription is regulated by Wnt/ß-catenin signaling. Genetic deficiency of Slc38a5 in mice substantially delays retinal vascular development and suppresses pathological neovascularization in oxygen-induced retinopathy modeling ischemic proliferative retinopathies. Inhibition of SLC38A5 in human retinal vascular ECs impairs EC proliferation and angiogenic function, suppresses glutamine uptake, and dampens vascular endothelial growth factor receptor 2. Together these findings suggest that SLC38A5 is a new metabolic regulator of retinal angiogenesis by controlling AA nutrient uptake and homeostasis in ECs.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Células Endoteliais , Humanos , Camundongos , Animais , Glutamina , Fator A de Crescimento do Endotélio Vascular , Neovascularização Patológica/genética , Sistemas de Transporte de Aminoácidos
6.
J Neurointerv Surg ; 13(6): 568-573, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32848021

RESUMO

BACKGROUND: Brain arteriovenous malformation (BAVM) is a main cause of cerebral hemorrhage and hemorrhagic stroke in adolescents. Morphologically, a BAVM is an abnormal connection between cerebrovascular arteries and veins. The genetic etiology of BAVMs has not been fully elucidated. In this study, we aim to investigate potential recessive genetic variants in BAVMs by interrogation of rare compound heterozygous variants. METHODS: We performed whole exome sequencing (WES) on 112 BAVM trios and analyzed the data for rare and deleterious compound heterozygous mutations associated with the disease. RESULTS: We identified 16 genes with compound heterozygous variants that were recurrent in more than one trio. Two genes (LRP2, MUC5B) were recurrently mutated in three trios. LRP2 has been previously associated with BAVM pathogenesis. Fourteen genes (MYLK, HSPG2, PEAK1, PIEZO1, PRUNE2, DNAH14, DNAH5, FCGBP, HERC2, HMCN1, MYH1, NHSL1, PLEC, RP1L1) were recurrently mutated in two trios, and five of these genes (MYLK, HSPG2, PEAK1, PIEZO1, PRUNE2) have been reported to play a role in angiogenesis or vascular diseases. Additionally, abnormal expression of the MYLK protein is related to spinal arteriovenous malformations. CONCLUSION: Our study indicates that rare recessive compound heterozygous variants may underlie cases of BAVM. These findings improve our understanding of BAVM pathology and indicate genes for functional validation.


Assuntos
Fístula Arteriovenosa/genética , Sequenciamento do Exoma/métodos , Exoma/genética , Variação Genética/genética , Malformações Arteriovenosas Intracranianas/genética , Adolescente , Adulto , Fístula Arteriovenosa/epidemiologia , China/epidemiologia , Proteínas do Olho/genética , Feminino , Humanos , Malformações Arteriovenosas Intracranianas/epidemiologia , Masculino , Adulto Jovem
7.
Diabetes ; 67(5): 974-985, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29487115

RESUMO

Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1ß (IL-1ß) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1ß expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Retinopatia Diabética/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/patologia , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Eletrorretinografia , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Neurônios Retinianos/patologia , Tomografia de Coerência Óptica , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
FASEB J ; 31(10): 4492-4502, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646017

RESUMO

Pathological proliferation of retinal blood vessels commonly causes vision impairment in proliferative retinopathies, including retinopathy of prematurity. Dysregulated crosstalk between the vasculature and retinal neurons is increasingly recognized as a major factor contributing to the pathogenesis of vascular diseases. Class 3 semaphorins (SEMA3s), a group of neuron-secreted axonal and vascular guidance factors, suppress pathological vascular growth in retinopathy. However, the upstream transcriptional regulators that mediate the function of SEMA3s in vascular growth are poorly understood. Here we showed that retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor and transcription factor, is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in a mouse model of oxygen-induced proliferative retinopathy. We found that genetic deficiency of RORα substantially induced Sema3e expression in retinopathy. Both RORα and SEMA3E were expressed in retinal ganglion cells. RORα directly bound to a specific ROR response element on the promoter of Sema3e and negatively regulated Sema3e promoter-driven luciferase expression. Suppression of Sema3e using adeno-associated virus 2 carrying short hairpin RNA targeting Sema3e promoted disoriented pathological neovascularization and partially abolished the inhibitory vascular effects of RORα deficiency in retinopathy. Our findings suggest that RORα is a novel transcriptional regulator of SEMA3E-mediated neurovascular coupling in pathological retinal angiogenesis.-Sun, Y., Liu, C.-H., Wang, Z., Meng, S. S., Burnim, S. B., SanGiovanni, J. P., Kamenecka, T. M., Solt, L. A., Chen, J. RORα modulates semaphorin 3E transcription and neurovascular interaction in pathological retinal angiogenesis.


Assuntos
Glicoproteínas/genética , Proteínas de Membrana/genética , Neovascularização Patológica/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Citoesqueleto , Células Endoteliais/metabolismo , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Neovascularização Patológica/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Células Ganglionares da Retina , Neovascularização Retiniana/genética , Semaforinas
9.
J Exp Med ; 214(6): 1753-1767, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28465464

RESUMO

Pathological neovessels growing into the normally avascular photoreceptors cause vision loss in many eye diseases, such as age-related macular degeneration and macular telangiectasia. Ocular neovascularization is strongly associated with inflammation, but the source of inflammatory signals and the mechanisms by which these signals regulate the disruption of avascular privilege in photoreceptors are unknown. In this study, we found that c-Fos, a master inflammatory regulator, was increased in photoreceptors in a model of pathological blood vessels invading photoreceptors: the very low-density lipoprotein receptor-deficient (Vldlr-/- ) mouse. Increased c-Fos induced inflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor (TNF), leading to activation of signal transducer and activator of transcription 3 (STAT3) and increased TNFα-induced protein 3 (TNFAIP3) in Vldlr-/- photoreceptors. IL-6 activated the STAT3/vascular endothelial growth factor A (VEGFA) pathway directly, and elevated TNFAIP3 suppressed SOCS3 (suppressor of cytokine signaling 3)-activated STAT3/VEGFA indirectly. Inhibition of c-Fos using photoreceptor-specific AAV (adeno-associated virus)-hRK (human rhodopsin kinase)-sh_c-fos or a chemical inhibitor substantially reduced the pathological neovascularization and rescued visual function in Vldlr-/- mice. These findings suggested that the photoreceptor c-Fos controls blood vessel growth into the normally avascular photoreceptor layer through the inflammatory signal-induced STAT3/VEGFA pathway.


Assuntos
Inflamação/metabolismo , Inflamação/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Transdução de Sinais , Animais , Dependovirus/metabolismo , Interleucina-6/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/patologia , RNA Interferente Pequeno/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Retina/fisiopatologia , Retinoides/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Cell Rep ; 18(7): 1606-1613, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28199833

RESUMO

Pathological neovascularization, a leading cause of blindness, is seen in retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration. Using a mouse model of hypoxia-driven retinal neovascularization, we find that fibroblast growth factor 21 (FGF21) administration suppresses, and FGF21 deficiency worsens, retinal neovessel growth. The protective effect of FGF21 against neovessel growth was abolished in adiponectin (APN)-deficient mice. FGF21 administration also decreased neovascular lesions in two models of neovascular age-related macular degeneration: very-low-density lipoprotein-receptor-deficient mice with retinal angiomatous proliferation and laser-induced choroidal neovascularization. FGF21 inhibited tumor necrosis α (TNF-α) expression but did not alter Vegfa expression in neovascular eyes. These data suggest that FGF21 may be a therapeutic target for pathologic vessel growth in patients with neovascular eye diseases, including retinopathy of prematurity, diabetic retinopathy, and age-related macular degeneration.


Assuntos
Neovascularização de Coroide/tratamento farmacológico , Fatores de Crescimento de Fibroblastos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Animais , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/metabolismo , Retina/metabolismo , Neovascularização Retiniana/metabolismo , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
EBioMedicine ; 13: 201-211, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27720395

RESUMO

Neovascular eye diseases including retinopathy of prematurity, diabetic retinopathy and age-related-macular-degeneration are major causes of blindness. Fenofibrate treatment in type 2 diabetes patients reduces progression of diabetic retinopathy independent of its peroxisome proliferator-activated receptor (PPAR)α agonist lipid lowering effect. The mechanism is unknown. Fenofibrate binds to and inhibits cytochrome P450 epoxygenase (CYP)2C with higher affinity than to PPARα. CYP2C metabolizes ω-3 long-chain polyunsaturated fatty acids (LCPUFAs). While ω-3 LCPUFA products from other metabolizing pathways decrease retinal and choroidal neovascularization, CYP2C products of both ω-3 and ω-6 LCPUFAs promote angiogenesis. We hypothesized that fenofibrate inhibits retinopathy by reducing CYP2C ω-3 LCPUFA (and ω-6 LCPUFA) pro-angiogenic metabolites. Fenofibrate reduced retinal and choroidal neovascularization in PPARα-/-mice and augmented ω-3 LCPUFA protection via CYP2C inhibition. Fenofibrate suppressed retinal and choroidal neovascularization in mice overexpressing human CYP2C8 in endothelial cells and reduced plasma levels of the pro-angiogenic ω-3 LCPUFA CYP2C8 product, 19,20-epoxydocosapentaenoic acid. 19,20-epoxydocosapentaenoic acid reversed fenofibrate-induced suppression of angiogenesis ex vivo and suppression of endothelial cell functions in vitro. In summary fenofibrate suppressed retinal and choroidal neovascularization via CYP2C inhibition as well as by acting as an agonist of PPARα. Fenofibrate augmented the overall protective effects of ω-3 LCPUFAs on neovascular eye diseases.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Fenofibrato/farmacologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Animais , Neovascularização de Coroide/tratamento farmacológico , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , PPAR alfa/metabolismo , Doenças Retinianas/tratamento farmacológico , Doenças Retinianas/etiologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Neovascularização Retiniana/tratamento farmacológico , Transdução de Sinais
12.
Am J Pathol ; 186(10): 2588-600, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27524797

RESUMO

Familial exudative vitreoretinopathy (FEVR) is characterized by delayed retinal vascular development, which promotes hypoxia-induced pathologic vessels. In severe cases FEVR may lead to retinal detachment and visual impairment. Genetic studies linked FEVR with mutations in Wnt signaling ligand or receptors, including low-density lipoprotein receptor-related protein 5 (LRP5) gene. Here, we investigated ocular pathologies in a Lrp5 knockout (Lrp5(-/-)) mouse model of FEVR and explored whether treatment with a pharmacologic Wnt activator lithium could bypass the genetic defects, thereby protecting against eye pathologies. Lrp5(-/-) mice displayed significantly delayed retinal vascular development, absence of deep layer retinal vessels, leading to increased levels of vascular endothelial growth factor and subsequent pathologic glomeruloid vessels, as well as decreased inner retinal visual function. Lithium treatment in Lrp5(-/-) mice significantly restored the delayed development of retinal vasculature and the intralaminar capillary networks, suppressed formation of pathologic glomeruloid structures, and promoted hyaloid vessel regression. Moreover, lithium treatment partially rescued inner-retinal visual function and increased retinal thickness. These protective effects of lithium were largely mediated through restoration of canonical Wnt signaling in Lrp5(-/-) retina. Lithium treatment also substantially increased vascular tubular formation in LRP5-deficient endothelial cells. These findings suggest that pharmacologic activation of Wnt signaling may help treat ocular pathologies in FEVR and potentially other defective Wnt signaling-related diseases.


Assuntos
Lítio/farmacologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Doenças Retinianas/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Oftalmopatias Hereditárias , Vitreorretinopatias Exsudativas Familiares , Feminino , Humanos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Retina/efeitos dos fármacos , Retina/embriologia , Doenças Retinianas/genética , Doenças Retinianas/patologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/embriologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 311(3): H738-49, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27473938

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness in the working-age population in developed countries, and its prevalence will increase as the global incidence of diabetes grows exponentially. DR begins with an early nonproliferative stage in which retinal blood vessels and neurons degenerate as a consequence of chronic hyperglycemia, resulting in vasoregression and persistent retinal ischemia, metabolic disequilibrium, and inflammation. This is conducive to overcompensatory pathological neovascularization associated with advanced proliferative DR. Although DR is considered a microvascular complication, the retinal microvasculature is intimately associated with and governed by neurons and glia; neurodegeneration, neuroinflammation, and dysregulation of neurovascular cross talk are responsible in part for vascular abnormalities in both early nonproliferative DR and advanced proliferative DR. Neuronal activity directly regulates microvascular dilation and blood flow in the process of neurovascular coupling. Retinal neurons also secrete guidance cues in response to injury, ischemia, or metabolic stress that may either promote or suppress vascular outgrowth, either alleviating or exacerbating DR, contingent on the stage of disease and retinal microenvironment. Neurodegeneration, impaired neurovascular coupling, and dysregulation of neuronal guidance cues are key events in the pathogenesis of DR, and correcting these events may prevent or delay development of advanced DR. The review discusses the mechanisms of neurovascular cross talk and its dysregulation in DR, and their potential therapeutic implications.


Assuntos
Retinopatia Diabética/fisiopatologia , Isquemia/fisiopatologia , Neovascularização Patológica/fisiopatologia , Neuroglia/metabolismo , Acoplamento Neurovascular/fisiologia , Neurônios Retinianos/metabolismo , Vasos Retinianos/fisiopatologia , Estresse Fisiológico/fisiologia , Retinopatia Diabética/metabolismo , Proteínas do Olho/metabolismo , Humanos , Inflamação , Isquemia/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/fisiologia , Fator de Crescimento Placentário/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Neurônios Retinianos/fisiologia , Vasos Retinianos/metabolismo , Semaforinas/metabolismo , Serpinas/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Arterioscler Thromb Vasc Biol ; 36(9): 1919-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27417579

RESUMO

OBJECTIVE: Pathological ocular neovascularization is a major cause of blindness. Increased dietary intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) reduces retinal neovascularization and choroidal neovascularization (CNV), but ω-3 LCPUFA metabolites of a major metabolizing pathway, cytochrome P450 oxidase (CYP) 2C, promote ocular pathological angiogenesis. We hypothesized that inhibition of CYP2C activity will add to the protective effects of ω-3 LCPUFA on neovascular eye diseases. APPROACH AND RESULTS: The mouse models of oxygen-induced retinopathy and laser-induced CNV were used to investigate pathological angiogenesis in the retina and choroid, respectively. The plasma levels of ω-3 LCPUFA metabolites of CYP2C were determined by mass spectroscopy. Aortic ring and choroidal explant sprouting assays were used to investigate the effects of CYP2C inhibition and ω-3 LCPUFA-derived CYP2C metabolic products on angiogenesis ex vivo. We found that inhibition of CYP2C activity by montelukast added to the protective effects of ω-3 LCPUFA on retinal neovascularization and CNV by 30% and 20%, respectively. In CYP2C8-overexpressing mice fed a ω-3 LCPUFA diet, montelukast suppressed retinal neovascularization and CNV by 36% and 39% and reduced the plasma levels of CYP2C8 products. Soluble epoxide hydrolase inhibition, which blocks breakdown and inactivation of CYP2C ω-3 LCPUFA-derived active metabolites, increased oxygen-induced retinopathy and CNV in vivo. Exposure to selected ω-3 LCPUFA metabolites of CYP2C significantly reversed the suppression of both angiogenesis ex vivo and endothelial cell functions in vitro by the CYP2C inhibitor montelukast. CONCLUSIONS: Inhibition of CYP2C activity adds to the protective effects of ω-3 LCPUFA on pathological retinal neovascularization and CNV.


Assuntos
Acetatos/farmacologia , Inibidores da Angiogênese/farmacologia , Neovascularização de Coroide/prevenção & controle , Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Quinolinas/farmacologia , Neovascularização Retiniana/prevenção & controle , Retinopatia da Prematuridade/prevenção & controle , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Células Cultivadas , Neovascularização de Coroide/enzimologia , Neovascularização de Coroide/genética , Neovascularização de Coroide/fisiopatologia , Ciclopropanos , Citocromo P-450 CYP2C8/genética , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ácidos Graxos Ômega-3/metabolismo , Genótipo , Humanos , Hiperóxia/complicações , Lasers , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Fisiológica/efeitos dos fármacos , Fenótipo , Neovascularização Retiniana/enzimologia , Neovascularização Retiniana/genética , Neovascularização Retiniana/fisiopatologia , Retinopatia da Prematuridade/enzimologia , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/fisiopatologia , Sulfetos , Técnicas de Cultura de Tecidos
15.
Arterioscler Thromb Vasc Biol ; 35(4): 855-64, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25657312

RESUMO

OBJECTIVE: The deficiency of very low-density lipoprotein receptor resulted in Wnt signaling activation and neovascularization in the retina. The present study sought to determine whether the very low-density lipoprotein receptor extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. APPROACH AND RESULTS: A plasmid expressing the soluble VLN was encapsulated with poly(lactide-co-glycolide acid) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain nanoparticle were used as negative control. MTT, modified Boyden chamber, and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell proliferation, migration, and tube formation. Vldlr(-/-) mice, oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models were used to evaluate the effect of VLN-NP on ocular neovascularization. Wnt reporter mice (BAT-gal), Western blotting, and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced endothelial cell proliferation, migration, and tube formation. Intravitreal injection of VLN-NP inhibited abnormal neovascularization in Vldlr(-/-), oxygen-induced retinopathy, and alkali burn-induced corneal neovascularization models, compared with low-density lipoprotein receptor extracellular domain nanoparticle. VLN-NP significantly inhibited the phosphorylation of low-density lipoprotein receptor-related protein 6, the accumulation of ß-catenin, and the expression of vascular endothelial growth factor in vivo and in vitro. CONCLUSIONS: Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has antiangiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathological ocular angiogenesis and potentially other vascular diseases affected by Wnt signaling.


Assuntos
Córnea/irrigação sanguínea , Neovascularização da Córnea/prevenção & controle , Ácido Láctico/química , Nanopartículas , Ácido Poliglicólico/química , Receptores de LDL/metabolismo , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/metabolismo , Transfecção/métodos , Via de Sinalização Wnt , Proteína Wnt3A/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Neovascularização da Córnea/genética , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/fisiopatologia , Modelos Animais de Doenças , Humanos , Injeções Intravítreas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Interferência de RNA , Ratos Sprague-Dawley , Receptores de LDL/genética , Neovascularização Retiniana/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/fisiopatologia , Vasos Retinianos/fisiopatologia , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt3A/genética , beta Catenina/metabolismo
16.
Diabetes ; 64(4): 1407-19, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25368097

RESUMO

Diabetic foot ulcer (DFU) caused by impaired wound healing is a common vascular complication of diabetes. The current study revealed that plasma levels of pigment epithelium-derived factor (PEDF) were elevated in type 2 diabetic patients with DFU and in db/db mice. To test whether elevated PEDF levels contribute to skin wound-healing delay in diabetes, endogenous PEDF was neutralized with an anti-PEDF antibody in db/db mice. Our results showed that neutralization of PEDF accelerated wound healing, increased angiogenesis in the wound skin, and improved the functions and numbers of endothelial progenitor cells (EPCs) in the diabetic mice. Further, PEDF-deficient mice showed higher baseline blood flow in the skin, higher density of cutaneous microvessels, increased skin thickness, improved numbers and functions of circulating EPCs, and accelerated wound healing compared with wild-type mice. Overexpression of PEDF suppressed the Wnt signaling pathway in the wound skin. Lithium chloride-induced Wnt signaling activation downstream of the PEDF interaction site attenuated the inhibitory effect of PEDF on EPCs and rescued the wound-healing deficiency in diabetic mice. Taken together, these results suggest that elevated circulating PEDF levels contribute to impaired wound healing in the process of angiogenesis and vasculogenesis through the inhibition of Wnt/ß-catenin signaling.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Pé Diabético/metabolismo , Proteínas do Olho/sangue , Fatores de Crescimento Neural/sangue , Serpinas/sangue , Via de Sinalização Wnt/fisiologia , Cicatrização/fisiologia , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Pé Diabético/sangue , Pé Diabético/fisiopatologia , Humanos , Camundongos , Pele/metabolismo
17.
Invest Ophthalmol Vis Sci ; 55(6): 3820-32, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24845641

RESUMO

PURPOSE: The mechanism for the antiangiogenic activity of peroxisome proliferator-activated receptor alpha (PPARα) remains incompletely understood. Endothelial progenitor cells (EPC) are known to participate in neovascularization (NV). The purpose of this study was to investigate whether PPARα regulates EPC during retinal NV. METHODS: Retinal NV was induced by oxygen-induced retinopathy (OIR). Mice with OIR were injected intraperitoneally with the PPARα agonist fenofibric acid (FA) or with adenovirus expressing PPARα (Ad-PPARα). Flow cytometry was used to quantify circulating and retinal EPC. Serum stromal cell-derived factor 1 (SDF-1) levels were measured by ELISA. Hypoxia was induced in primary human retinal capillary endothelial cells (HRCEC) and mouse brain endothelial cells (MBEC) by CoCl2. Levels of SDF-1 and hypoxia-inducible factor 1 alpha (HIF-1α) were measured by Western blotting. RESULTS: Fenofibric acid and overexpression of PPARα attenuated the increase of circulating and retinal EPC, correlating with suppressed retinal NV in OIR mice at P17. The PPARα knockout enhanced the OIR-induced increase of circulating and retinal EPC. Fenofibric acid decreased retinal HIF-1α and SDF-1 levels as well as serum SDF-1 levels in the OIR model. In HRCEC, PPARα inhibited HIF-1α nuclear translocation and SDF-1 overexpression induced by hypoxia. Further, MBEC from PPARα(-/-) mice showed more prominent activation of HIF-1α and overexpression of SDF-1 induced by hypoxia, compared with the wild-type (WT) MBEC. PPARα failed to block SDF-1 overexpression induced by a constitutively active mutant of HIF-1α, suggesting that regulation of SDF-1 by PPARα was through blockade of HIF-1α activation. CONCLUSIONS: Peroxisome proliferator-activated receptor alpha suppresses ischemia-induced EPC mobilization and homing through inhibition of the HIF-1α/SDF-1 pathway. This represents a novel molecular mechanism for PPARα's antiangiogenic effects.


Assuntos
Quimiocina CXCL12/metabolismo , Endotélio Vascular/metabolismo , Mobilização de Células-Tronco Hematopoéticas , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , PPAR alfa/fisiologia , Células-Tronco/metabolismo , Adenoviridae/genética , Animais , Western Blotting , Células Cultivadas , Circulação Cerebrovascular , Modelos Animais de Doenças , Fenofibrato/análogos & derivados , Fenofibrato/farmacologia , Citometria de Fluxo , Angiofluoresceinografia , Expressão Gênica/fisiologia , Humanos , Hipolipemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/toxicidade , PPAR alfa/agonistas , Reação em Cadeia da Polimerase em Tempo Real , Neovascularização Retiniana/patologia , Neovascularização Retiniana/prevenção & controle , Vasos Retinianos/citologia
18.
Cornea ; 33(4): 405-13, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452210

RESUMO

PURPOSE: The aim of this study was to evaluate the antiangiogenic activity of AU6, a novel 6-amino acid peptide derived from Kringle V of human apolipoprotein (a). METHODS: RF/6A rhesus macaque choroid endothelial cells were used for in vitro studies. MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assays and modified Boyden chamber and Matrigel assays were used to evaluate the inhibitory effect of AU6 on vascular endothelial growth factor (VEGF)-stimulated endothelial cell functions, including cell proliferation, migration, and tube formation. The chick chorioallantoic membrane model, micropocket corneal neovascularization (CNV) model, and alkali burn CNV model were evaluated in vivo. Bevacizumab (Avastin), the VEGF-neutralizing antibody, and a scrambled peptide (AU6s) were used as positive and negative controls, respectively. RESULTS: AU6 inhibited VEGF-induced RF/6A cell migration, proliferation, and tube formation. It also reduced pathological neovascularization in the chorioallantoic membrane model and in the 2 CNV models, that is, the mouse corneal micropocket model and the rat cornea alkali burn model. CONCLUSIONS: AU6 effectively inhibited pathogenic CNV. This novel peptide shows potential as a new treatment for ocular neovascularization.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoproteína(a)/farmacologia , Neovascularização da Córnea/prevenção & controle , Kringles , Oligopeptídeos/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Apoproteína(a)/química , Bevacizumab , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Corioide/irrigação sanguínea , Colágeno , Modelos Animais de Doenças , Combinação de Medicamentos , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Laminina , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Oligopeptídeos/química , Proteoglicanas , Ratos , Ratos Sprague-Dawley , Sais de Tetrazólio , Tiazóis , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia
19.
BMC Cell Biol ; 14: 8, 2013 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-23433118

RESUMO

BACKGROUND: The goal of this study was to investigate the anti-angiogenic activity of a novel peptide H-RN, derived from the hepatocyte growth factor kringle 1 domain (HGF K1), in a mouse model of corneal neovascularization. The anti-angiogenic effect of H-RN on vascular endothelial growth factor (VEGF)-stimulated cell proliferation, cell migration and endothelial cell tube formation was assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVECs) and in vivo using a mouse cornea micropocket assay. Apoptosis and cell cycle arrest were assessed by flow cytometry. A scrambled peptide was used as a negative control. RESULTS: H-RN effectively inhibited VEGF-stimulated HUVEC proliferation, migration and tube formation on Matrigel, while a scrambled peptide exerted no effect. In the mouse model of corneal angiogenesis, VEGF-stimulated angiogenesis was significantly inhibited by H-RN compared to a scrambled peptide that had no such activity. VEGF protected HUVECs from apoptosis, while H-RN inhibited this protective effect of VEGF. VEGF significantly increased the proportion of cells in the S phase compared to control treated cells (p<0.05). Treatment with H-RN (1.5 mM) induced the accumulation of cells in G0/G1 phase, while the proportion of cells in the S phase and G2/M phase decreased significantly compared to control group (p<0.05). CONCLUSIONS: H-RN has anti-angiogenic activity in HUVECs and in a mouse model of VEGF-induced corneal neovascularization. The anti-angiogenic activity of H-RN was related to apoptosis and cell cycle arrest, indicating a potential strategy for anti-angiogenic treatment in the cornea.


Assuntos
Inibidores da Angiogênese/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Fator de Crescimento de Hepatócito/química , Fragmentos de Peptídeos/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/química , Córnea/irrigação sanguínea , Neovascularização da Córnea/tratamento farmacológico , Modelos Animais de Doenças , Combinação de Medicamentos , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/uso terapêutico , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/química , Camundongos , Neovascularização Patológica , Fragmentos de Peptídeos/uso terapêutico , Estrutura Terciária de Proteína , Proteoglicanas/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA