Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Neural Regen Res ; 20(2): 533-547, 2025 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38819065

RESUMO

JOURNAL/nrgr/04.03/01300535-202502000-00030/figure1/v/2024-05-28T214302Z/r/image-tiff In patients with Alzheimer's disease, gamma-glutamyl transferase 5 (GGT5) expression has been observed to be downregulated in cerebrovascular endothelial cells. However, the functional role of GGT5 in the development of Alzheimer's disease remains unclear. This study aimed to explore the effect of GGT5 on cognitive function and brain pathology in an APP/PS1 mouse model of Alzheimer's disease, as well as the underlying mechanism. We observed a significant reduction in GGT5 expression in two in vitro models of Alzheimer's disease (Aß1-42-treated hCMEC/D3 and bEnd.3 cells), as well as in the APP/PS1 mouse model. Additionally, injection of APP/PS1 mice with an adeno-associated virus encoding GGT5 enhanced hippocampal synaptic plasticity and mitigated cognitive deficits. Interestingly, increasing GGT5 expression in cerebrovascular endothelial cells reduced levels of both soluble and insoluble amyloid-ß in the brains of APP/PS1 mice. This effect may be attributable to inhibition of the expression of ß-site APP cleaving enzyme 1, which is mediated by nuclear factor-kappa B. Our findings demonstrate that GGT5 expression in cerebrovascular endothelial cells is inversely associated with Alzheimer's disease pathogenesis, and that GGT5 upregulation mitigates cognitive deficits in APP/PS1 mice. These findings suggest that GGT5 expression in cerebrovascular endothelial cells is a potential therapeutic target and biomarker for Alzheimer's disease.

2.
Adv Funct Mater ; 34(17)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-39071865

RESUMO

Cardiac arrest (CA)-induced cerebral ischemia remains challenging with high mortality and disability. Neural stem cell (NSC) engrafting is an emerging therapeutic strategy with considerable promise that, unfortunately, is severely compromised by limited cell functionality after in vivo transplantation. This groundbreaking report demonstrates that metabolic glycoengineering (MGE) using the "Ac5ManNTProp (TProp)" monosaccharide analog stimulates the Wnt/ß-catenin pathway, improves cell adhesion, and enhances neuronal differentiation in human NSCs in vitro thereby substantially increasing the therapeutic potential of these cells. For the first time, MGE significantly enhances NSC efficacy for treating ischemic brain injury after asphyxia CA in rats. In particular, neurological deficit scores and neurobehavioral tests experience greater improvements when the therapeutic cells are pretreated with TProp than with "stand-alone" NSC therapy. Notably, the TProp-NSC group exhibits significantly stronger neuroprotective functions including enhanced differentiation, synaptic plasticity, and reduced microglia recruitment; furthermore, Wnt pathway agonists and inhibitors demonstrate a pivotal role for Wnt signaling in the process. These findings help establish MGE as a promising avenue for addressing current limitations associated with NSC transplantation via beneficially influencing neural regeneration and synaptic plasticity, thereby offering enhanced therapeutic options to boost brain recovery following global ischemia.

3.
J Clin Invest ; 134(15)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900572

RESUMO

Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms (AAs), a devastating vascular disease with a higher prevalence and fatality rate in men than in women. However, the mechanism by which androgen mediates AAs is largely unknown. Here, we found that male, not female, mice developed AAs when exposed to aldosterone and high salt (Aldo-salt). We revealed that androgen and androgen receptors (ARs) were crucial for this sexually dimorphic response to Aldo-salt. We identified programmed cell death protein 1 (PD-1), an immune checkpoint, as a key link between androgen and AAs. Furthermore, we demonstrated that administration of anti-PD-1 Ab and adoptive PD-1-deficient T cell transfer reinstated Aldo-salt-induced AAs in orchiectomized mice and that genetic deletion of PD-1 exacerbated AAs induced by a high-fat diet and angiotensin II (Ang II) in nonorchiectomized mice. Mechanistically, we discovered that the AR bound to the PD-1 promoter to suppress the expression of PD-1 in the spleen. Thus, our study unveils a mechanism by which androgen aggravates AAs by suppressing PD-1 expression in T cells. Moreover, our study suggests that some patients with cancer might benefit from screenings for AAs during immune checkpoint therapy.


Assuntos
Androgênios , Aneurisma Aórtico , Receptor de Morte Celular Programada 1 , Receptores Androgênicos , Animais , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Camundongos , Masculino , Feminino , Androgênios/farmacologia , Androgênios/metabolismo , Receptores Androgênicos/metabolismo , Receptores Androgênicos/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/genética , Aneurisma Aórtico/patologia , Aldosterona/metabolismo , Camundongos Knockout , Humanos , Angiotensina II/farmacologia
4.
Adv Mater ; 36(10): e2210144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36730098

RESUMO

Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Compostos de Manganês/farmacologia , Trombina , Neuroproteção , Óxidos , Fibrinolíticos/uso terapêutico , Isquemia , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
Front Oncol ; 13: 1249198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746253

RESUMO

Hepatocellular carcinoma (HCC) is an extremely malignant tumor that affects individuals throughout the world. One of the main causes of HCC is hepatitis B virus (HBV). Therefore, it is crucial to understand the mechanisms underlying HBV carcinogenesis. Increasing evidence suggests that the HBV X protein (HBx), which is encoded by HBV, plays a significant role in cell apoptosis, DNA damage repair, and cell cycle regulation. This ultimately leads to the development of HCC. Additionally, recent studies have shown that non-coding RNA (ncRNA) also contributes to the carcinogenesis and pathogenesis of different of tumors. ncRNA plays a significant role in the formation of HCC by regulating the inflammatory signaling pathway, activating immune cells, and modifying epigenetics. However, it remains unclear whether ncRNA is involved in the regulation of the carcinogenic mechanisms of HBx. This article reviews the carcinogenic mechanism of HBx and its interaction with ncRNA, providing a novel strategy for the clinical diagnosis and treatment of HCC.

6.
EBioMedicine ; 93: 104645, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37315449

RESUMO

BACKGROUND: Various studies have reported cell-free RNAs (cfRNAs) as noninvasive biomarkers for detecting hepatocellular carcinoma (HCC). However, they have not been independently validated, and some results are contradictory. We provided a comprehensive evaluation of various types of cfRNA biomarkers and a full mining of the biomarker potential of new features of cfRNA. METHODS: We first systematically reviewed reported cfRNA biomarkers and calculated dysregulated post-transcriptional events and cfRNA fragments. In 3 independent multicentre cohorts, we further selected 6 cfRNAs using RT-qPCR, built a panel called HCCMDP with AFP using machine learning, and internally and externally validated HCCMDP's performance. FINDINGS: We identified 23 cfRNA biomarker candidates from a systematic review and analysis of 5 cfRNA-seq datasets. Notably, we defined the cfRNA domain to describe cfRNA fragments systematically. In the verification cohort (n = 183), cfRNA fragments were more likely to be verified, while circRNA and chimeric RNA candidates were neither abundant nor stable as qPCR-based biomarkers. In the algorithm development cohort (n = 287), we build and test the panel HCCMDP with 6 cfRNA markers and AFP. In the independent validation cohort (n = 171), HCCMDP can distinguish HCC patients from control groups (all: AUC = 0.925; CHB: AUC = 0.909; LC: AUC = 0.916), and performs well in distinguishing early-stage HCC patients (all: AUC = 0.936; CHB: AUC = 0.917; LC: AUC = 0.928). INTERPRETATION: This study comprehensively evaluated full-spectrum cfRNA biomarker types for HCC detection, highlighted the cfRNA fragment as a promising biomarker type in HCC detection, and provided a panel HCCMDP. FUNDING: National Natural Science Foundation of China, and The National Key Basic Research Program (973 program).


Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas , Ácidos Nucleicos Livres/genética , Biomarcadores Tumorais/genética , Curva ROC , MicroRNAs/genética
7.
Molecules ; 28(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175248

RESUMO

Low-density lipoprotein receptor-related protein 6 (LRP6), a member of the low-density lipoprotein receptor (LDLR) family, displays a unique structure and ligand-binding function. As a co-receptor of the Wnt/ß-catenin signaling pathway, LRP6 is a novel therapeutic target that plays an important role in the regulation of cardiovascular disease, lipid metabolism, tumorigenesis, and some classical signals. By using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX), with recombinant human LRP-6 as the target, four candidate aptamers with a stem-loop structure were selected from an ssDNA library-AptLRP6-A1, AptLRP6-A2, AptLRP6-A3, and AptLRP6-A4. The equilibrium dissociation constant KD values between these aptamers and the LRP6 protein were in the range of 0.105 to 1.279 µmol/L, as determined by CE-LIF analysis. Their affinities and specificities were further determined by the gold nanoparticle (AuNP) colorimetric method. Among them, AptLRP6-A3 showed the highest affinity with LRP6-overexpressed human breast cancer cells. Therefore, the LRP6 aptamer identified in this study constitutes a promising modality for the rapid diagnosis and treatment of LRP6-related diseases.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Lipoproteínas LDL , Ouro , DNA de Cadeia Simples , Aptâmeros de Nucleotídeos/química
8.
J Appl Clin Med Phys ; 24(7): e14023, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37166416

RESUMO

BACKGROUND: Endoscopic ultrasonography (EUS) is recommended as the best tool for evaluating gastric subepithelial lesions (SELs); nonetheless, it has difficulty distinguishing gastrointestinal stromal tumors (GISTs) from leiomyomas and schwannomas. GISTs have malignant potential, whereas leiomyomas and schwannomas are considered benign. PURPOSE: This study aimed to establish a combined radiomic model based on EUS images for distinguishing GISTs from leiomyomas and schwannomas in the stomach. METHODS: EUS images of pathologically confirmed GISTs, leiomyomas, and schwannomas were collected from five centers. Gastric SELs were divided into training and testing datasets based on random split-sample method (7:3). Radiomic features were extracted from the tumor and muscularis propria regions. Principal component analysis, least absolute shrinkage, and selection operator were used for feature selection. Support vector machine was used to construct radiomic models. Two radiomic models were built: the conventional radiomic model included tumor features alone, whereas the combined radiomic model incorporated features from the tumor and muscularis propria regions. RESULTS: A total of 3933 EUS images from 485 cases were included. For the differential diagnosis of GISTs from leiomyomas and schwannomas, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve were 74.5%, 72.2%, 78.7%, and 0.754, respectively, for the EUS experts; 76.8%, 74.4%, 81.0%, and 0.830, respectively, for the conventional radiomic model; and 90.9%, 91.0%, 90.6%, and 0.953, respectively, for the combined radiomic model. For gastric SELs <20 mm, the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve of the combined radiomic model were 91.4%, 91.6%, 91.1%, and 0.960, respectively. CONCLUSIONS: We developed and validated a combined radiomic model to distinguish gastric GISTs from leiomyomas and schwannomas. The combined radiomic model showed better diagnostic performance than the conventional radiomic model and could assist EUS experts in non-invasively diagnosing gastric SELs, particularly gastric SELs <20 mm.


Assuntos
Tumores do Estroma Gastrointestinal , Leiomioma , Neurilemoma , Neoplasias Gástricas , Humanos , Tumores do Estroma Gastrointestinal/diagnóstico por imagem , Tumores do Estroma Gastrointestinal/patologia , Endossonografia , Neoplasias Gástricas/diagnóstico por imagem , Leiomioma/diagnóstico por imagem , Leiomioma/patologia , Neurilemoma/diagnóstico por imagem , Estômago/patologia
9.
JAMA Oncol ; 9(4): 465-472, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821107

RESUMO

Importance: Cancers are a leading cause of mortality, accounting for nearly 10 million annual deaths worldwide, or 1 in 6 deaths. Cancers also negatively affect countries' economic growth. However, the global economic cost of cancers and its worldwide distribution have yet to be studied. Objective: To estimate and project the economic cost of 29 cancers in 204 countries and territories. Design, Setting, and Participants: A decision analytical model that incorporates economic feedback in assessing health outcomes associated with the labor force and investment. A macroeconomic model was used to account for (1) the association of cancer-related mortality and morbidity with labor supply; (2) age-sex-specific differences in education, experience, and labor market participation of those who are affected by cancers; and (3) the diversion of cancer treatment expenses from savings and investments. Data were collected on April 25, 2022. Main Outcomes and Measures: Economic cost of 29 cancers across countries and territories. Costs are presented in international dollars at constant 2017 prices. Results: The estimated global economic cost of cancers from 2020 to 2050 is $25.2 trillion in international dollars (at constant 2017 prices), equivalent to an annual tax of 0.55% on global gross domestic product. The 5 cancers with the highest economic costs are tracheal, bronchus, and lung cancer (15.4%); colon and rectum cancer (10.9%); breast cancer (7.7%); liver cancer (6.5%); and leukemia (6.3%). China and the US face the largest economic costs of cancers in absolute terms, accounting for 24.1% and 20.8% of the total global burden, respectively. Although 75.1% of cancer deaths occur in low- and middle-income countries, their share of the economic cost of cancers is lower at 49.5%. The relative contribution of treatment costs to the total economic cost of cancers is greater in high-income countries than in low-income countries. Conclusions and Relevance: In this decision analytical modeling study, the macroeconomic cost of cancers was found to be substantial and distributed heterogeneously across cancer types, countries, and world regions. The findings suggest that global efforts to curb the ongoing burden of cancers are warranted.


Assuntos
Neoplasias , Masculino , Feminino , Humanos , Morbidade , Neoplasias/epidemiologia , Neoplasias/terapia , Escolaridade , China
10.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711644

RESUMO

Androgen has long been recognized for its pivotal role in the sexual dimorphism of cardiovascular diseases, including aortic aneurysms, a devastating vascular disease with a higher prevalence and mortality rate in men than women. However, the molecular mechanism by which androgen mediates aortic aneurysms is largely unknown. Here, we report that male but not female mice develop aortic aneurysms in response to aldosterone and high salt (Aldo-salt). We demonstrate that both androgen and androgen receptors (AR) are crucial for the sexually dimorphic response to Aldo-salt. We identify T cells expressing programmed cell death protein 1 (PD-1), an immune checkpoint molecule important in immunity and cancer immunotherapy, as a key link between androgen and aortic aneurysms. We show that intraperitoneal injection of anti-PD-1 antibody reinstates Aldo-salt-induced aortic aneurysms in orchiectomized mice. Mechanistically, we demonstrate that AR binds to the PD-1 promoter to suppress its expression in the spleen. Hence, our study reveals an important but unexplored mechanism by which androgen contributes to aortic aneurysms by suppressing PD-1 expression in T cells. Our study also suggests that cancer patients predisposed to the risk factors of aortic aneurysms may be advised to screen for aortic aneurysms during immune checkpoint therapy.

11.
BMC Oral Health ; 22(1): 274, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790917

RESUMO

BACKGROUND: The mandibular second molars demonstrate variations on root and canal morphology. The aim of this study was to investigate all the root canal morphology of mandibular second molars and analyze the morphological variations in patients by gender and age in a Chinese population use CBCT imaging. METHODS: Cone-beam computed tomographic images of 1200 bilateral mandibular second molars were obtained from 600 patients (300 females and 300 males) who required a preoperative assessment for implant surgery, surgical removal of impacted teeth, orthodontic treatment, surgery of maxillofacial tumour and cysts or LeFort I osteotomy. CBCT images were divided into 5 groups according to age: "15-24 years", "25-34 years", "35-44 years", "45-54 years" and "≥ 55 years"; and 2 groups by gender: "females" and "males". The following information were recorded: the number of roots and canals and their morphology, the frequency and configuration of C-shaped canals by gender, age and position (left and right). The chi-square test was used to analyse differences between groups. P value of < 0.05 was considered statistically significant. RESULTS: Of the 1200 teeth, 61% had two separate roots located mesiodistally, 35.6% had one C-shaped root. The 45.3% teeth had three canals in two-rooted mandibular second molars. The mesial root showed a Vertucci type II configuration in 28.9% cases followed by type IV(24.4%). While the distal root showed a significant higher prevalence of type I configuration in 95.6%. In the examined 1200 teeth, 430 teeth (35.8%) had C-shaped root canals. The prevalence of C-shaped root canal systems was significantly higher in females (42.5%) than in males (29.1%) (P = 0.000), and did not differ with age (P = 0.126). The 80.4% C-shaped canals were bilateral (P = 0.000) and did not differ with side (left and right) (P = 0.758). CONCLUSIONS: The most commonly observed root morphology for the mandibular second molars was 2 separate roots with three canals.The prevalence of C-shaped root canal is 35.8% and is more higher in females than in males.


Assuntos
Cavidade Pulpar , Mandíbula , Adolescente , Adulto , China , Tomografia Computadorizada de Feixe Cônico/métodos , Cavidade Pulpar/anatomia & histologia , Cavidade Pulpar/diagnóstico por imagem , Feminino , Humanos , Masculino , Mandíbula/diagnóstico por imagem , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem , Adulto Jovem
12.
Theranostics ; 12(4): 1800-1815, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198074

RESUMO

Rationale: With the advantages of tumor-targeting, pH-responsive drug releasing, and biocompatibility, ferritin nanocage emerges as a promising drug carrier. However, its wide applications were significantly hindered by the low loading efficiency of hydrophobic drugs. Herein, we redesigned the inner surface of ferritin drug carrier (ins-FDC) by fusing the C- terminus of human H ferritin (HFn) subunit with optimized hydrophobic peptides. Methods: Hydrophobic and hydrophilic drugs were encapsulated into the ins-FDC through the urea-dependent disassembly/reassembly strategy and the natural drug entry channel of the protein nanocage. The morphology and drug loading/releasing abilities of the drug-loaded nanocarrier were then examined. Its tumor targeting character, system toxicity, application in synergistic therapy, and anti-tumor action were further investigated. Results: After optimization, 39 hydrophobic Camptothecin and 150 hydrophilic Epirubicin were encapsulated onto one ins-FDC nanocage. The ins-FDC nanocage exhibited programed drug release pattern and increased the stability and biocompatibility of the loaded drugs. Furthermore, the ins-FDC possesses tumor targeting property due to the intrinsic CD71-binding ability of HFn. The loaded drugs may penetrate the brain blood barrier and accumulate in tumors in vivo more efficiently. As a result, the drugs loaded on ins-FDC showed reduced side effects and significantly enhanced efficacy against glioma, metastatic liver cancer, and chemo-resistant breast tumors. Conclusions: The ins-FDC nanocarrier offers a promising novel means for the delivery of hydrophobic compounds in cancer treatments, especially for the combination therapies that use both hydrophobic and hydrophilic chemotherapeutics.


Assuntos
Ferritinas , Glioma , Apoferritinas/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Epirubicina , Ferritinas/química , Glioma/tratamento farmacológico , Humanos
13.
Front Pharmacol ; 12: 766024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925023

RESUMO

Cardiac hypertrophy is caused by cardiac volume or pressure overload conditions and ultimately leads to contractile dysfunction and heart failure. Oxytocin (OT), an endocrine nonapeptide, has been identified as a cardiovascular homeostatic hormone with anti-hypertrophic effects. However, the underlying mechanism remains elusive. In this study, we aimed to investigate the role and mechanism of OT in cardiac hypertrophy. The rats with cardiac hypertrophy induced by isoproterenol (ISO) were treated with or without oxytocin. Cardiac functional parameters were analyzed by echocardiography. The changes in cell surface area were observed using wheat germ agglutinin (WGA) or immunofluorescence staining. The expressions of cardiac hypertrophy markers (B-Natriuretic Peptide, BNP and ß-myosin heavy chain, ß-MHC), long non-coding RNA Growth (LcRNA) Arrest-Specific transcript 5 (lncRNA GAS5), miR-375-3p, and Kruppel-like factor 4 (Klf4) were detected by qRT-PCR. KLF4 protein and PI3K/AKT pathway related proteins were detected by Western blot. The interactions among lncRNA GAS5, miR-375-3p, and Klf4 were verified by dual-luciferase reporter assays. The findings showed that OT significantly attenuated cardiac hypertrophy, increased expressions of lncRNA GAS5 and KLF4, and decreased miR-375-3p expression. In vitro studies demonstrated that either knock-down of lncRNA GAS5 or Klf4, or over-expression of miR-375-3p blunted the anti-hypertrophic effects of OT. Moreover, down-regulation of lncRNA GAS5 promoted the expression of miR-375-3p and inhibited KLF4 expression. Similarly, over-expression of miR-375-3p decreased the expression of KLF4. Dual-luciferase reporter assays validated that lncRNA GAS5 could sponge miR-375-3p and Klf4 was a direct target gene of miR-375-3p. In addition, OT could inactivate PI3K/AKT pathway. The functional rescue experiments further identified OT regulated PI3K/AKT pathway through lncRNA GAS5/miR-375-3p/KLF4 axis. In summary, our study demonstrates that OT ameliorates cardiac hypertrophy by inhibiting PI3K/AKT pathway via lncRNA GAS5/miR-375-3p/KLF4 axis.

14.
Comput Biol Med ; 133: 104357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33836449

RESUMO

False positive reduction plays a key role in computer-aided detection systems for pulmonary nodule detection in computed tomography (CT) scans. However, this remains a challenge owing to the heterogeneity and similarity of anisotropic pulmonary nodules. In this study, a novel attention-embedded complementary-stream convolutional neural network (AECS-CNN) is proposed to obtain more representative features of nodules for false positive reduction. The proposed network comprises three function blocks: 1) attention-guided multi-scale feature extraction, 2) complementary-stream block with an attention module for feature integration, and 3) classification block. The inputs of the network are multi-scale 3D CT volumes due to variations in nodule sizes. Subsequently, a gradual multi-scale feature extraction block with an attention module was applied to acquire more contextual information regarding the nodules. A subsequent complementary-stream integration block with an attention module was utilized to learn the significantly complementary features. Finally, the candidates were classified using a fully connected layer block. An exhaustive experiment on the LUNA16 challenge dataset was conducted to verify the effectiveness and performance of the proposed network. The AECS-CNN achieved a sensitivity of 0.92 with 4 false positives per scan. The results indicate that the attention mechanism can improve the network performance in false positive reduction, the proposed AECS-CNN can learn more representative features, and the attention module can guide the network to learn the discriminated feature channels and the crucial information embedded in the data, thereby effectively enhancing the performance of the detection system.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Radiográfica Assistida por Computador , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
Biomaterials ; 264: 120447, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33069137

RESUMO

Cancer recurrence post surgical resection is of considerable challenge especially in glioblastoma (GBM) therapy. Herein, we demonstrate that interferon-alpha (IFN) fused to a body temperature-sensitive elastin-like polypeptide (IFN-ELP(V)) formed a depot in situ when injected into GBM resection cavity in a mouse brain orthotopic model of GBM. Notably, IFN-ELP(V) in the depot showed a zero-order release kinetics, resulting in dramatically improved pharmacokinetics and biodistribution, and thus inhibited GBM recurrence by stimulating antitumor immunoresponse as compared to IFN. More importantly, when combined with subsequent intraperitoneal injection of temozolomide (TMZ), IFN-ELP(V) could much more effectively suppress post-surgical GBM recurrence than IFN, leading to a remarkably enhanced GBM-free survival rate (60%) over IFN (12.5%). Our findings implicate that the spatiotemporally-programmed combination of IFN-ELP(V) and TMZ leads to the synergy of post-surgical GBM immunochemotherapy, thereby providing a new and effective strategy for cancer therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Camundongos , Recidiva Local de Neoplasia , Temozolomida/uso terapêutico , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Biomed Pharmacother ; 133: 110993, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33220608

RESUMO

BACKGROUND: Myocardial ischemia/reperfusion (I/R) injury is a common cause of mortality. Cardiac miR-146a is emerging as a potent regulator of myocardial function. Dexmedetomidine preconditioning provides cardioprotective effects, of which mechanisms related to miR-146a-3p are unclear. METHODS: A myocardial I/R model in rats and a cellular anoxia/reoxygenation (A/R) model in H9C2 cells were established and preconditioned with dexmedetomidine or not. H9C2 cells were transfected with mimics, inhibitor, or negative controls of miR-146a-3p, and siRNAs of IRAK1 or TRAF6. Relative expressions of miR-146a-3p were determined by quantitative real-time polymerase chain reaction. The apoptosis rates and reactive oxygen species (ROS) levels in H9C2 cells were examined by flow cytometry. Protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, BCL-2, NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), IκBα, and phosphorylated IκBα (p-IκBα) in H9C2 cells were detected by Western blot. RESULTS: Dexmedetomidine decreased myocardial infarction size and apoptosis rates of H9C2 cells. Dexmedetomidine upregulated expression of miR-146a-3p. Dexmedetomidine significantly decreased protein expressions of IRAK1, TRAF6, cleaved Caspase-3, BAX, and NF-κB p65, but increased expressions of BCL-2 in H9C2 cells. miR-146a-3p overexpression strengthened the anti-apoptotic effect induced by dexmedetomidine in H9C2 cells via decreasing protein levels of IRAK1, TRAF6, cleaved Caspase-3, BAX, NF-κB p65, p-NF-κB p65, and p-IκBα and increasing protein level of BCL-2. Downregulation of miR-146a-3p reversed the changes in these proteins in H9C2 cells. Expressions of NF-κB p65 and p-NF-κB p65 were further decreased following knockdown of IRAK1 or TRAF6. ROS emission was significantly increased after A/R, while significantly decreased following dexmedetomidine preconditioning in H9C2 cells transfected with siIRAK1 or siTRAF6. CONCLUSION: miR-146a-3p targeting IRAK1 and TRAF6 through inhibition of NF-κB signaling pathway and ROS emission is involved in cardioprotection induced by dexmedetomidine pretreatment.


Assuntos
Apoptose/efeitos dos fármacos , Dexmedetomidina/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Hipóxia Celular , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Quinases Associadas a Receptores de Interleucina-1/genética , Masculino , MicroRNAs/genética , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética
17.
J Control Release ; 328: 444-453, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32898593

RESUMO

Polypeptides are useful in designing protein-polypeptide conjugates for therapeutic applications; however, they are not satisfactory in improving the stability of therapeutic proteins and extending their in vivo half-life. Here we show that thermally-induced self-assembly (TISA) of elastin-like polypeptide diblock copolymer fused interferon alpha (IFNα-ELPdiblock) into a spherical micelle can dramatically enhance the proteolytic stability of IFNα. Notably, the circulation half-life of IFNα-ELPdiblock micelle (54.7 h) is 124.3-, 5.7-, and 1.4-time longer than those of free IFNα (0.44 h), freely soluble IFNα-ELP (9.6 h), and PEGylated IFNα (39.0 h), respectively. Importantly, in a mouse model of ovarian tumor, IFNα-ELPdiblock micelle exhibited significantly enhanced tumor retention and antitumor efficacy over free IFNα, freely soluble IFNα-ELP, and even PEGylated IFNα. These findings provide a thermoresponsive supramolecular strategy of TISA to design protein-diblock copolypeptide conjugate micelles with enhanced stability and pharmacology.


Assuntos
Elastina , Interferon-alfa , Animais , Camundongos , Micelas , Peptídeos , Temperatura
18.
Biomed Pharmacother ; 128: 110358, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32526456

RESUMO

BACKGROUND: Oxytocin (OT) has shown a cardioprotective effect on myocardial ischemia/reperfusion injury (MIRI). This study aimed to investigate whether the cardioprotective effect of OT is associated with the inhibition of mast cell degranulation and inflammation. METHODS: The left anterior descending coronary artery of rats was ligated for 30 min and reperfused for 120 min to establish an ischemia and reperfusion (I/R) injury model. A preliminary experiment was conducted to evaluate the optimal dose of OT (0.01, 0.1, 1 µg/kg via intraperitoneal). The mast cell secretagogue compound 48/80 (C48/80) was used to promote the degranulation of mast cells with or without I/R injury, while rats were pretreated with OT to determine whether this compound suppresses mast cell degranulation. The expression of the inflammatory factors HMGB1 and NF-κB p65 was evaluated. A cell experiment was performed for verification. RESULTS: C48/80 (0.5 mg/kg, intravenous) increased mast cell degranulation and tryptase release compared with I/R-treated alone (27.12 ± 3.52 % vs. 16.57 ± 2.23 %; 8.34 ± 1.66 ng/mL vs. 3.63 ± 0.63 ng/mL), but these effects could be decreased by OT (0.1 µg/kg, intraperitoneal) preconditioning (19.29 ± 0.74 %; 5.37 ± 0.73 ng/mL). Besides that, hemodynamic disorders, arrhythmias, cardiac edema, infarct size, histopathological damage, and the levels of cTnI, HMGB1 and NF-κB p65 were significantly increased in I/R-treated group compared with corresponding observations in the control group, and C48/80 exacerbated these injuries, but pretreatment with OT could ameliorate these effects. Furthermore, C48/80 (10 µg/mL) inhibited the viability and promoted the apoptosis of H9C2(2-1) and RBL-2H3 cells, and increased the release of cTnI and tryptase, all of which were reversed by prophylactic OT (0.01 ng/mL) treatment. CONCLUSION: We concluded that OT pretreatment inhibits the degranulation of cardiac mast cells induced by I/R injury and downregulates the expression of the inflammatory factors HMGB1 and NF-κB p65.


Assuntos
Anti-Inflamatórios/farmacologia , Degranulação Celular/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Ocitocina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Proteína HMGB1/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Mastócitos/metabolismo , Mastócitos/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley , Fator de Transcrição RelA/metabolismo , Troponina I/metabolismo
19.
Biomaterials ; 250: 120073, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353628

RESUMO

Genetic fusion of a therapeutic protein to albumin can improve its stability and pharmacokinetics, but it usually leads to considerably reduced bioactivity and poor tumor penetration due to increased steric hindrance, resulting in limited antitumor efficacy. Herein we report head-to-tail macrocyclization of albumin-binding domain fused interferon alpha (IFN-ABD) to form a cyclic fusion protein (c-IFN-ABD) with well-retained albumin-binding affinity. Notably, c-IFN-ABD showed not only greater thermal and enzymatic stability and thus antiproliferative activity than IFN-ABD and IFN due to the macrocyclization, but also exhibited considerably better pharmacokinetics than IFN and cyclic IFN owing to the albumin-binding affinity. More importantly, c-IFN-ABD showed deeper tumor penetration, greater tumor retention, and thus higher antitumor efficiency than all the controls without significant systemic side effects in mice bearing melanoma. These results implicate that head-to-tail macrocyclization of ABD fused therapeutic proteins is an enabling strategy for the design of highly potent protein therapeutics for tumor therapy.


Assuntos
Interferon-alfa , Neoplasias , Albuminas , Animais , Camundongos , Cauda
20.
Comput Biol Med ; 119: 103675, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339120

RESUMO

Different frequency components of the lung, which have not been fully considered in traditional computer-aided detection systems for pulmonary nodules, can cause heterogeneous energy distribution. Hence, spectral analysis, which is an important time-frequency representation tool, is utilized to characterize the frequency-dependent energy responses of nodules. In this study, a novel spectral-analysis-based method for nodule candidate detection is presented. The optimal fractional S-transform is applied to transform raw computed tomography images from the spatial to time-frequency domain. Next, a time-frequency cube is decomposed using spectral decomposition to a frequency-dependent energy slice. Subsequently, an energy distribution is obtained by the Teager-Kaiser energy (TKE) to characterize the nodules. Finally, nodule candidates are detected using rule-based and threshold algorithms in the TKE image. The proposed method is validated on a clinical CT data set from Sichuan Provincial People's Hospital. The signal-to-clutter ratio (SCR) increases by 35.5% with respect to raw CT slices. Furthermore, the proposed method exhibits a sensitivity of 97.87%, with only 6.8 false positives per slice. The total number of nodule candidates has an average reduction of 50%. The results indicate that the time-frequency features can effectively characterize solid nodules. Moreover, the proposed method demonstrates accurate detection and can reduce the number of false positive efficiently.


Assuntos
Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Algoritmos , Diagnóstico por Computador , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador , Sensibilidade e Especificidade , Nódulo Pulmonar Solitário/diagnóstico por imagem , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA