Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Inform ; : e202300336, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39031899

RESUMO

Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 µM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 µM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.

2.
Int J Biol Macromol ; 274(Pt 1): 133171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880444

RESUMO

Cancer treatment faces numerous challenges, such as inadequate drug targeting, steep price tags, grave toxic side effects, and limited therapeutic efficacy. Therefore, there is an urgent need for a safe and effective new drug to combat cancer. Microbial polysaccharides, complex and diverse biological macromolecules, exhibit significant microbial variability and uniqueness. Studies have shown that terrestrial microbial polysaccharides possess a wide range of biological activities, including immune enhancement, antioxidant properties, antiviral effects, anti-tumour potential, and hypoglycemic functions. To delve deeper into the structure-activity relationship of these land-based microbial polysaccharides against cancer, we conducted a comprehensive review and analysis of anti-cancer literature published between 2020 and 2024. The anticancer efficacy of terrestrial microbial polysaccharides is influenced by multiple factors, including the microbial species, existing form, chemical structure, and polysaccharide purity. According to the literature, an optimal molecular weight and good water solubility are essential for demonstrating anticancer activity. Furthermore, the addition of mannose and galactose has been found to significantly enhance the anticancer properties of these polysaccharides. These insights will serve as a valuable reference for future research and progress in the field of cancer drug therapy, particularly with regards to terrestrial microbial polysaccharides.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos Bacterianos/uso terapêutico , Relação Estrutura-Atividade , Animais , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/uso terapêutico
3.
Blood Adv ; 8(15): 4113-4124, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38885482

RESUMO

ABSTRACT: Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients providing a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled in a phase 1 trial assessing the safety of third party, SARS-CoV-2-specific CTLs. Twelve interventional patients, 6 of whom were immunocompromised, matched the HLA-A∗02:01 restriction of the CTLs and received a single infusion of 1 of 4 escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared with an observational group of 18 patients lacking HLA-A∗02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab polymerase chain reaction testing showed ≥88% and >99% viral elimination from baseline in all patients at 4 and 14 days after infusion, respectively. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor ß analysis showed persistence of donor-derived SARS-CoV-2-specific CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2 to 3 days after infusion, whereas improvement was more variable in observational patients. SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. This trial was registered at www.clinicaltrials.gov as #NCT04765449.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T Citotóxicos , Humanos , COVID-19/imunologia , COVID-19/terapia , Linfócitos T Citotóxicos/imunologia , Pessoa de Meia-Idade , Masculino , SARS-CoV-2/imunologia , Feminino , Idoso , Adulto , Estudos de Viabilidade , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Resultado do Tratamento , Antígeno HLA-A2/imunologia
4.
World J Gastroenterol ; 30(14): 1968-1981, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38681120

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.


Assuntos
Progressão da Doença , Necroptose , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Ferroptose , Hepatócitos/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Piroptose
5.
Eur J Med Chem ; 271: 116435, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38648728

RESUMO

Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Mieloma Múltiplo , Bibliotecas de Moléculas Pequenas , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/uso terapêutico , Estrutura Molecular
6.
Cancer Lett ; 587: 216728, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38431036

RESUMO

Lysosomes are crucial organelles responsible for the degradation of cytosolic materials and bulky organelles, thereby facilitating nutrient recycling and cell survival. However, lysosome also acts as an executioner of cell death, including ferroptosis, a distinctive form of regulated cell death that hinges on iron-dependent phospholipid peroxidation. The initiation of ferroptosis necessitates three key components: substrates (membrane phospholipids enriched with polyunsaturated fatty acids), triggers (redox-active irons), and compromised defence mechanisms (GPX4-dependent and -independent antioxidant systems). Notably, iron assumes a pivotal role in ferroptotic cell death, particularly in the context of cancer, where iron and oncogenic signaling pathways reciprocally reinforce each other. Given the lysosomes' central role in iron metabolism, various strategies have been devised to harness lysosome-mediated iron metabolism to induce ferroptosis. These include the re-mobilization of iron from intracellular storage sites such as ferritin complex and mitochondria through ferritinophagy and mitophagy, respectively. Additionally, transcriptional regulation of lysosomal and autophagy genes by TFEB enhances lysosomal function. Moreover, the induction of lysosomal iron overload can lead to lysosomal membrane permeabilization and subsequent cell death. Extensive screening and individually studies have explored pharmacological interventions using clinically available drugs and phytochemical agents. Furthermore, a drug delivery system involving ferritin-coated nanoparticles has been specifically tailored to target cancer cells overexpressing TFRC. With the rapid advancements in understandings the mechanistic underpinnings of ferroptosis and iron metabolism, it is increasingly evident that lysosomes represent a promising target for inducing ferroptosis and combating cancer.


Assuntos
Ferro , Neoplasias , Humanos , Morte Celular , Ferro/metabolismo , Ferritinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Lisossomos/metabolismo
7.
J Med Chem ; 67(6): 4346-4375, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484122

RESUMO

Over the past decades, the role of rearranged during transfection (RET) alterations in tumorigenesis has been firmly established. RET kinase inhibition is an essential therapeutic target in patients with RET-altered cancers. In clinical practice, initial efficacy can be achieved in patients through the utilization of multikinase inhibitors (MKIs) with RET inhibitory activity. However, the effectiveness of these MKIs is impeded by the adverse events associated with off-target effects. Recently, many RET-selective inhibitors, characterized by heightened specificity and potency, have been developed, representing a substantial breakthrough in the field of RET precision oncology. This Perspective focuses on the contemporary understanding of RET mutations, recent advancements in next-generation RET inhibitors, and the challenges associated with resistance to RET inhibitors. It provides valuable insights for the development of next-generation MKIs and selective RET inhibitors.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogênicas c-ret/genética , Medicina de Precisão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Neoplasias Pulmonares/tratamento farmacológico
8.
Arch Pathol Lab Med ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38452805

RESUMO

CONTEXT.­: Mutant KRAS is the main oncogenic driver in pancreatic ductal adenocarcinomas (PDACs). However, the clinical and phenotypic implications of harboring different mutant KRAS alleles remain poorly understood. OBJECTIVE.­: To characterize the potential morphologic and clinical outcome differences in PDACs harboring distinct mutant KRAS alleles. DESIGN.­: Cohort 1 consisted of 127 primary conventional PDACs with no neoadjuvant therapy, excluding colloid/mucinous, adenosquamous, undifferentiated, and intraductal papillary mucinous neoplasm-associated carcinomas, for which an in-house 42-gene mutational panel had been performed. A morphologic classification system was devised wherein each tumor was assigned as conventional, papillary/large duct (P+LD, defined as neoplastic glands with papillary structure and/or with length ≥0.5 mm), or poorly differentiated (when the aforementioned component was 60% or more of the tumor). Cohort 2 was a cohort of 88 PDACs in The Cancer Genome Atlas, which were similarly analyzed. RESULTS.­: In both cohorts, there was significant enrichment of P+LD morphology in PDACs with KRAS G12V and G12R compared with G12D. In the entire combined cohort, Kaplan-Meier analyses showed longer overall survival (OS) with KRAS G12R as compared with G12D (median OS of 1255 versus 682 days, P = .03) and in patients whose PDACs displayed P+LD morphology as compared with conventional morphology (median OS of 1175 versus 684 days, P = .04). In the adjuvant-only subset, KRAS G12R had the longest OS compared with G12D, G12V, and other alleles (median OS unreached/undefined versus 1009, 1129, and 1222 days, respectively). CONCLUSIONS.­: PDACs with different mutant KRAS alleles are associated with distinct morphologies and clinical outcomes, with KRAS G12R allele associated with P+LD morphology and longer OS when compared with G12D using Kaplan-Meier studies.

9.
Chin J Integr Med ; 30(7): 608-615, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386252

RESUMO

OBJECTIVE: To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS: A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS: TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION: TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.


Assuntos
Medicamentos de Ervas Chinesas , Fibrose , Traumatismo por Reperfusão Miocárdica , Miocárdio , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Camundongos Endogâmicos C57BL , Camundongos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transição Endotélio-Mesênquima
10.
Biomed Pharmacother ; 169: 115905, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38000356

RESUMO

The therapeutic benefits of available FLT3 inhibitors for AML are limited by drug resistance, which is related to mutations, as well toxicity caused by off-target effects. In this study, we introduce a new small molecule FLT3 inhibitor called danatinib, which was designed to overcome the limitations of currently approved agents. Danatinib demonstrated greater potency and selectivity, resulting in cytotoxic activity specific to FLT3-ITD and/or FLT3-TKD mutated models. It also showed a superior kinome inhibition profile compared to several currently approved FLT3 inhibitors. In diverse FLT3-TKD models, danatinib exhibited substantially improved activity at clinically relevant doses, outperforming approved FLT3 inhibitors. In vivo safety evaluations performed on the granulopoiesis of transgenic myeloperoxidase (MPO) zebrafish and mice models proved danatinib to have an acceptable safety profile. Danatinib holds promise as a new and improved FLT3 inhibitor for the treatment of AML, offering long-lasting remissions and improved overall survival rates.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Animais , Camundongos , Peixe-Zebra , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação
11.
Diagn Pathol ; 18(1): 116, 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865792

RESUMO

BACKGROUND: Among the three NTRK genes, NTRK2 possesses a tremendous structural complexity and involves tumorigenesis of several types of tumors. To date, only STRN and RBPMS are identified in the fusion with NTRK2 in adult soft tissue tumors. More recently, the highly selective Trk tyrosine kinases inhibitors, including larotrectinib and entrectinib, have shown significant efficacy for treating tumors harboring NTRK fusions and were approved by FDA. CASE PRESENTATION: We report a case of sarcoma in a 35-year-old female harboring two STRN-NTRK2 gene fusions, with a good clinical response to first-line larotrectinib treatment. Core biopsy of the 16.5 cm gluteal mass showed a high-grade mesenchymal neoplasm with features reminiscent of a solitary fibrous tumor, but negative for STAT6. In-house next-generation sequencing gene fusion panel showed two in-frame STRN-NTRK2 fusions, which contain the same 5' partner sequence (exon 1-3) of STRN, and the 3' fusion partner starting from either the exon 15 or the exon 16 of NTRK2. Due to the large size and location of the tumor, first-line neoadjuvant therapy with larotrectinib was initiated. The patient has an excellent clinical response with an 83% tumor size reduction by imaging. The tumor was subsequently completely resected. After 130 days, larotrectinib was reinitiated for lung metastasis (up to 7 cm), and a complete resolution was achieved. When compared with NTRK1 and NTRK3, NTRK2 fusions are the least common. Of note, the only other report in the literature on NRTK2 fusion-positive sarcoma also showed solitary fibrous tumor (SFT)-like morphology, and the patient responded well to larotrectinib as the second line adjuvant therapy. CONCLUSIONS: In conclusion, the identification of NTRK2 fusions in patients with soft tissue tumors could significantly improve the clinical outcome through selective NTRK inhibitor therapy, especially in the first-line setting. Prompt RNA-based NGS testing at initial diagnosis may benefit these patients. Our case is among the first few in the literature on NTRK2 fusion sarcoma with first-line larotrectinib therapy in the primary and metastatic setting, with good clinical response and minimal side effects.


Assuntos
Proteínas de Membrana , Neoplasias , Sarcoma , Neoplasias de Tecidos Moles , Tumores Fibrosos Solitários , Adulto , Feminino , Humanos , Proteínas de Ligação a Calmodulina/genética , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptor trkA , Sarcoma/tratamento farmacológico , Sarcoma/genética , Sarcoma/patologia
12.
Am J Dermatopathol ; 45(9): e74-e82, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625813

RESUMO

ABSTRACT: We report a 48-year-old man with CD30+ large cell transformation of mycosis fungoides (tMF) with distinctive anaplastic morphology. The patient initially presented with folliculotropic and syringotropic mycosis fungoides (MF) manifested as occipital scalp plaque and trunk and extremities patches. Six years later, he progressed to the tumor stage from his scalp lesion and developed cervical lymphadenopathy. Lymph node and scalp biopsies showed diffuse infiltration of CD30+ anaplastic cells with multinucleated, hallmark-like, Hodgkin-Reed-Sternberg-like, histiocytoid forms, indistinguishable from anaplastic large cell lymphoma (ALCL). T-cell receptor gamma gene (TCRg) rearrangement studies revealed identical clones in the initial MF scalp lesion and nodal anaplastic lesion, confirming the transformation. Ancillary studies showed absence of IRF4/DUSP22 and ALK rearrangements and positive RB1, SMARCA4, SOCS1, and TP53 mutations. The patient achieved partial response with systemic chemotherapy. Our case is an example of tMF presenting as the morphology and phenotype of ALCL. Because clinical behavior and therapeutic options of tMF and primary cutaneous ALCL may be different, it is clinically relevant to differentiate these 2 entities. The proof of clonal relationship may be useful in diagnostically challenging cases with features overlapping between tMF and primary cutaneous ALCL.


Assuntos
Micose Fungoide , Neoplasias Cutâneas , Masculino , Humanos , Micose Fungoide/genética , Biópsia , Células Clonais , Extremidades , Neoplasias Cutâneas/genética , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
13.
Zhen Ci Yan Jiu ; 48(4): 372-7, 2023 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-37186202

RESUMO

OBJECTIVE: To observe the effects of electroacupuncture (EA) combined with acellular nerve allograft (ANA) on the morphological structure of spinal ganglion cells and the protein expressions of nerve growth factor (NGF) and phosphorylated protein kinase B (p-Akt) in rats with sciatic nerve injury (SNI), so as to explore the protective mechanism of EA combined with ANA on spinal ganglia. METHODS: SPF male SD rats were randomly divided into normal, model, single ANA bridging (bridging) and EA + ANA (combination) groups, with 10 rats in each group. The SNI rat model was established by right sciatic nerve transection. Rats in the bridging group were bridged with ANA to the two broken ends of injured sciatic nerves. Rats in the combination group were treated with EA at "Yanglingquan" (GB34) and "Huantiao" (GB30) 2 d after ANA bridging, with dilatational wave, frequency of 1 Hz/20 Hz, intensity of 1 mA, 15 min/d, 7 d as a course of treatment for 4 consecutive courses. Sciatic function index (SFI) was observed by footprint test. Wet weight ratio of tibialis anterior muscle was calculated after weighing. Morphology of rat spinal ganglion cells was observed after Nissl staining. The protein expressions of NGF and p-Akt were detected by immunofluorescence and Western blot. RESULTS: Compared with the normal group, the SFI and wet weight ratio of tibialis anterior muscle were significantly decreased (P<0.05), the number of Nissl bodies in spinal ganglion cells was significantly reduced (P<0.05) with dissolution and incomplete structure, the protein expressions of NGF and p-Akt in ganglion cells were significantly decreased (P<0.05) in the model group. Following the interventions and in comparison with the model group, the SFI and the wet weight ratio of tibialis anterior muscle were significantly increased (P<0.05), the damage of Nissl bodies in ganglion cells was reduced and the number was obviously increased (P<0.05), and the protein expressions of NGF and p-Akt in ganglion cells were significantly increased (P<0.05) in the bridging and combination groups. Compared with the bridging group, the SFI and the wet weight ratio of tibialis anterior muscle were increased (P<0.05), the morphology of Nissl bodies in ganglion cells was more regular and the number was increased (P<0.05), the protein expressions of NGF and p-Akt in spinal ganglion cells were significantly increased (P<0.05) in the combination group. CONCLUSION: EA combined with ANA can improve the SFI and the wet weight ratio of tibialis anterior muscle in SNI rats, improve the morphology and structure of Nissl bodies in spinal ganglion cells, and increase the protein expressions of NGF and p-Akt in spinal ganglion, so as to play a protective role on spinal ganglia.


Assuntos
Aloenxertos , Eletroacupuntura , Gânglios Espinais , Traumatismos dos Nervos Periféricos , Nervo Isquiático , Animais , Masculino , Ratos , Aloenxertos/metabolismo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Traumatismos dos Nervos Periféricos/terapia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Nervo Isquiático/lesões
15.
Adv Healthc Mater ; 12(19): e2203118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929289

RESUMO

Owing to the serious clinical side effects of intravenous Taxol, an oral chemotherapeutic strategy is expected to be promising for paclitaxel (PTX) delivery. However, its poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity need to be overcome. A triglyceride (TG)-like prodrug strategy facilitates oral drug delivery by bypassing liver metabolism. However, the effect of fatty acids (FAs) in sn-1,3 on the oral absorption of prodrugs remains unclear. Herein, a series of TG-mimetic prodrugs of PTX is explored with different carbon chain lengths and degrees of unsaturation of FAs at the sn-1,3 position in an attempt to enhance oral antitumor effect and to guide the design of TG-like prodrugs. Interestingly, the different FA lengths exhibit great influence on in vitro intestinal digestion behavior, lymph transport efficiency, and up to fourfold differences in plasma pharmacokinetics. The prodrug with long-chain FAs shows a more effective antitumor effect, whereas the degree of unsaturation has a negligible impact. The findings illustrate how FAs structures affect the oral delivery efficiency of TG-like PTX prodrugs and thus provide a theoretical basis for their rational design.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Paclitaxel/química , Ácidos Graxos , Sistemas de Liberação de Medicamentos , Triglicerídeos
16.
Neuropathology ; 43(5): 391-395, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36786200

RESUMO

Pilocytic astrocytoma (PA), a central nervous system (CNS) World Health Organization grade 1 tumor, is mainly seen in children or young adults aged 5-19. Surgical resection often provides excellent outcomes, but residual tumors may still remain. This low-grade tumor is well recognized for its classic radiological and morphological features; however, some unique molecular findings have been unveiled by the application of next-generation sequencing (NGS). Among the genetic abnormalities identified in this low-grade tumor, increasing evidence indicates that BRAF alterations, especially BRAF fusions, play an essential role in PA tumorigenesis. Among the several fusion partner genes identified in PAs, KIAA1549-BRAF fusion is notably the most common detectable genetic alteration, especially in the cerebellar PAs. Here, we report a case of a young adult patient with a large, right-sided posterior fossa cerebellar and cerebellopontine angle region mass consistent with a PA. Of note, NGS detected a novel GNAI3-BRAF fusion, which results in an in-frame fusion protein containing the kinase domain of BRAF. This finding expands the knowledge of BRAF fusions in the tumorigenesis of PAs, provides an additional molecular signature for diagnosis, and a target for future therapy.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Criança , Adulto Jovem , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Astrocitoma/diagnóstico por imagem , Astrocitoma/genética , Astrocitoma/metabolismo , Neoplasias do Sistema Nervoso Central/genética , Mutação , Carcinogênese , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo
17.
Genes Chromosomes Cancer ; 62(6): 353-360, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36704911

RESUMO

Transcription factor EB (TFEB)-rearranged renal cell carcinoma (RCC) exhibits diverse gene fusion patterns and heterogeneous clinicopathologic features. Rare TFEB-amplified RCCs have been described recently and are associated with a more aggressive clinical course. Herein, we report a case of an 86-year-old man with a solid 9.2-cm kidney tumor that showed a diffuse high-grade sarcomatoid morphology. The tumor demonstrated a novel BYSL::TFEB fusion containing exons 1-2 of the BYSL gene fused to exons 3-10 of TFEB via next-generation sequencing by using NextSeq sequencer. Fluorescence in situ hybridization (FISH) studies displayed concurrent high-copy number TFEB amplification in two distinct patterns, a balanced increase of 5' and 3' copies, and solely increased 5' copies, and mouse double minute 2 (MDM2) gene amplification by using TFEB (6p21.1) dual-color break-apart probe and MDM2 FISH probe. Notably, the tumor showed a distinctive immunoprofile with overexpressions of TFEB, epithelial membrane antigen, Cathepsin K, and PDL-1 (SP263). FISH test for transcription factor binding to IGHM enhancer 3 (TFE3) was negative for rearrangement and corresponding immunonegativity of TFE3. These findings not only expand the repertoire of known TFEB fusion partners implicated in tumorigenesis, but also may provide novel information for target therapy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Sarcoma , Neoplasias de Tecidos Moles , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente , Neoplasias Renais/patologia , Carcinoma de Células Renais/patologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Éxons , Sarcoma/genética , Neoplasias de Tecidos Moles/genética , Biomarcadores Tumorais/genética , Translocação Genética , Moléculas de Adesão Celular/genética
18.
Analyst ; 148(3): 683-689, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36629898

RESUMO

Fluorescent lateral flow immunoassay (FLFIA) is widely used mainly because of its low cost and instant detection. Its limit of detection (LOD) is closely related to fluorescence signals, and the development of fluorescence signals with fine performance remains a challenge. In this work, dendritic mesoporous silica nanoparticles (DMSNs) were used as fine carriers due to their large pore size and stable performance. We successfully synthesized carbon dots (CDs) with a 560 nm maximum emission wavelength (CD560) by the hydrothermal method. A new type of fluorescence signal for FLFIA was observed by loading CD560 on DMSNs through the Si-O bond which is denoted as DMSNs@CD560. Applying DMSNs@CD560 to the FLFIA can eliminate the influence of interfacial background blue fluorescence thus improving its detection sensitivity. The formed DMSNs@CD560-FLFIA achieved high sensitivity detection of ovarian cancer biomarkers carbohydrate antigen 125 (CA125) and human epididymal protein 4 (HE4). The LOD of CA125 is 0.5 U mL-1 and the correlation coefficient R2 = 0.985, and the LOD of HE4 reaches 0.05 ng mL-1 and the correlation coefficient R2 = 0.981. The DMSNs@CD560-FLFIA is sensitive and efficient providing a new method for the early diagnosis of ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Feminino , Humanos , Biomarcadores Tumorais , Antígeno Ca-125 , Carbono/química , Imunoensaio/métodos , Neoplasias Ovarianas/diagnóstico , Sensibilidade e Especificidade
19.
J Ethnopharmacol ; 300: 115688, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067838

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In traditional Chinese medicine, a long term of improper diet causes the Dampness and disturbs Zang-Fu's functions including Kidney deficiency. Atractylodes lancea (Atr) and Magnolia officinalis (Mag) as a famous herb pair are commonly used to transform Dampness, with kidney protection. AIM OF THE STUDY: To explore how Atr and Mag protected against insulin signaling impairment in glomerular podocytes induced by high dietary fructose feeding, a major contributor for insulin resistance in glomerular podocyte dysfunction. MATERIALS AND METHODS: Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyze constituents of Atr and Mag. Rat model was induced by 10% fructose drinking water in vivo, and heat-sensitive human podocyte cells (HPCs) were exposed to 5 mM fructose in vitro. Animal or cultured podocyte models were treated with different doses of Atr, Mag or Atr and Mag combination. Western blot, qRT-PCR and immunofluorescence assays as well as other experiments were performed to detect adiponectin receptor protein 1 (AdipoR1), protein kinase B (AKT), Sirt1, p53 and miR-221 levels in rat glomeruli or HPCs, respectively. RESULTS: Fifty-five components were identified in Atr and Mag combination. Network pharmacology analysis indicated that Atr and Mag combination might affect insulin signaling pathway. This combination significantly improved systemic insulin resistance and prevented glomerulus morphological damage in high fructose-fed rats. Of note, high fructose decreased IRS1, AKT and AdipoR1 in rat glomeruli and cultured podocytes. Further data from cultured podocytes with Sirt1 inhibitor/agonist, p53 agonist/inhibitor, or miR-221 mimic/inhibitor showed that high fructose downregulated Sirt1 to stimulate p53-driven miR-221, resulting in insulin signaling impairment. Atr and Mag combination effectively increased Sirt1, and decreased p53 and miR-221 in in vivo and in vitro models. CONCLUSIONS: Atr and Mag combination improved insulin signaling in high fructose-stimulated glomerular podocytes possibly through upregulating Sirt1 to inhibit p53-driven miR-221. Thus, the regulation of Sirt1/p53/miR-221 by this combination may be a potential therapeutic approach in podocyte insulin signaling impairment.


Assuntos
Atractylodes , Água Potável , Resistência à Insulina , Magnolia , MicroRNAs , Podócitos , Animais , Proteínas de Transporte/metabolismo , Cromatografia Líquida , Água Potável/metabolismo , Frutose/efeitos adversos , Humanos , Insulina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores de Adiponectina/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Espectrometria de Massas em Tandem , Proteína Supressora de Tumor p53/metabolismo
20.
J Clin Transl Hepatol ; 10(5): 847-859, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36304494

RESUMO

Background and Aims: The concurrence of nonalcoholic steatohepatitis (NASH) and ulcerative colitis (UC) is increasingly seen in clinical practice, but the underlying mechanisms remain unclear. This study aimed to develop a mouse model of the phenomenon by combining high-fat high-cholesterol diet (HFHCD)-induced NASH and dextran sulfate sodium (DSS)-induced UC, that would support mechanistic studies. Methods: Male C57BL/6 mice were randomly assigned to two groups receiving either a chow diet or HFHCD for 12 weeks of NASH modeling. The mice were the divided into four subgroups for UC modeling: (1) A control group given a chow diet with normal drinking water; (2) A colitis group given chow diet with 2% DSS in drinking water; (3) A steatohepatitis group given HFHCD with normal drinking water; and (4) A steatohepatitis + colitis group given HFHCD with 2% DSS in drinking water. Results: NASH plus UC had high mortality (58.3%). Neither NASH nor UC alone were fatal. Although DSS-induced colitis did not exacerbate histological liver injury in HFHCD-fed mice, premorbid NASH significantly increased UC-related gut injury compared with UC alone. It was characterized by a significantly shorter colon, more colonic congestion, and a higher histopathological score (p<0.05). Inflammatory (tumor necrosis factor-alpha, interleukin 1 beta, C-C motif chemokine ligand 2, and nuclear factor kappa B) and apoptotic (Bcl2, Bad, Bim, and Bax) signaling pathways were significantly altered in distal colon tissues collected from mice with steatohepatitis + colitis compared with the other experimental groups. Conclusions: Premorbid steatohepatitis significantly aggravated DSS-induced colitis and brought about a lethal phenotype. Potential links between NASH and UC pathogeneses can be investigated using this model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA