Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831541

RESUMO

Carbonic anhydrase IX (CAIX), a zinc metal transmembrane protein, is highly expressed in 95% of clear cell renal cell carcinomas (ccRCCs). A positron emission tomography (PET) probe designed to target CAIX in nuclear medicine imaging technology can achieve precise positioning, is noninvasive, and can be used to monitor CAIX expression in lesions in real time. In this study, we constructed a novel acetazolamide dual-targeted small-molecule probe [68Ga]Ga-LF-4, which targets CAIX by binding to a specific amino acid sequence. After attenuation correction, the radiolabeling yield reached 66.95 ± 0.57% (n = 5) after 15 min of reaction and the radiochemical purity reached 99% (n = 5). [68Ga]Ga-LF-4 has good in vitro and in vivo stability, and in vivo safety and high affinity for CAIX, with a Kd value of 6.62 nM. Moreover, [68Ga]Ga-LF-4 could be quickly cleared from the blood in vivo. The biodistribution study revealed that the [68Ga]Ga-LF-4 signal was concentrated in the heart, lung, and kidney after administration, which was the same as that observed in the micro-PET/CT study. In a ccRCC patient-derived xenograft (PDX) model, the signal significantly accumulated in the tumor after administration, where it was retained for up to 4 h. After competitive blockade with LF-4, uptake at the tumor site was significantly reduced. The SUVmax of the probe [68Ga]Ga-LF-4 at the ccRCC tumor site was three times greater than that in the PC3 group with low CAIX expression at 30 min (ccRCC vs PC3:1.86 ± 0.03 vs 0.62 ± 0.01, t = 48.2, P < 0.0001). These results indicate that [68Ga]Ga-LF-4 is a novel small-molecule probe that targets CAIX and can be used to image localized and metastatic ccRCC lesions.

2.
Biomed Pharmacother ; 175: 116669, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677243

RESUMO

BACKGROUND: The lack of an efficient way to screen patients who are responsive to immunotherapy challenges PD1/CTLA4-targeting cancer treatment. Immunotherapeutic efficacy cannot be clearly determined by peripheral blood analyses, tissue gene markers or CT/MR value. Here, we used a radionuclide and imaging techniques to investigate the novel dual targeted antibody cadonilimab (AK104) in PD1/CTLA4-positive cells in vivo. METHODS: First, humanized PD1/CTLA4 mice were purchased from Biocytogen Pharmaceuticals (Beijing) Co., Ltd. to express hPD1/CTLA4 in T-cells. Then, mouse colon cancer MC38-hPD-L1 cell xenografts were established in humanized mice. A bispecific antibody targeting PD1/CTLA4 (AK104) was labeled with radio-nuclide iodine isotopes. Immuno-PET/CT imaging was performed using a bispecific monoclonal antibody (mAb) probe 124I-AK104, developed in-house, to locate PD1+/CTLA4+ tumor-infiltrating T cells and monitor their distribution in mice to evaluate the therapeutic effect. RESULTS: The 124I-AK104 dual-antibody was successfully constructed with ideal radiochemical characteristics, in vitro stability and specificity. The results of immuno-PET showed that 124I-AK104 revealed strong hPD1/CTLA4-positive responses with high specificity in humanized mice. High uptake of 124I-AK104 was observed not only at the tumor site but also in the spleen. Compared with PD1- or CTLA4-targeting mAb imaging, 124I-AK104 imaging had excellent standard uptake values at the tumor site and higher tumor to nontumor (T/NT) ratios. CONCLUSIONS: The results demonstrated the potential of translating 124I-AK104 into a method for screening patients who benefit from immunotherapy and the efficacy, as well as the feasibility, of this method was verified by immuno-PET imaging of humanized mice.


Assuntos
Anticorpos Biespecíficos , Antígeno CTLA-4 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Receptor de Morte Celular Programada 1 , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/imunologia , Humanos , Camundongos , Antígeno CTLA-4/imunologia , Linhagem Celular Tumoral , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Receptor de Morte Celular Programada 1/imunologia , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Radioisótopos do Iodo , Ensaios Antitumorais Modelo de Xenoenxerto , Distribuição Tecidual , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Feminino
3.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38270082

RESUMO

T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models: 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Radioisótopos do Iodo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual
4.
Eur J Med Chem ; 266: 116134, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266552

RESUMO

PURPOSE: Claudin 18.2 (CLDN18.2), due to its highly selective expression in tumor cells, has made breakthrough progress in clinical research and is expected to be integrated into routine tumor diagnosis and treatment. METHODS: In this research, we obtained an scFv-Fc fusion protein (SF106) targeting CLDN18.2 through hybridoma technology. The scFv-Fc fusion protein was labeled with radioactive isotopes (124I and 177Lu) to generate the radio-probes. The targeting and specificity of the radio-probes were tested in cellular models, and its diagnostic and therapeutic potential was further evaluated in tumor-bearing models. RESULTS: The molecular probes [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 possess high radiochemical purity (RCP, 98.18 ± 0.93 % and 97.05 ± 1.1 %) and exhibit good stability in phosphate buffer saline and 5 % human serum albumin (92.44 ± 4.68 % and 91.03 ± 2.42 % at 120 h). [124I]I-SF106 uptake in cells expressing CLDN18.2 was well targeted and specific, and the dissociation constant was 17.74 nM [124I]I-SF106 micro-PET imaging showed that the maximum standardized uptake value (SUVmax) was significantly higher than CLDN18.2-negative tumors (1.83 ± 0.02 vs. 1.23 ± 0.04, p < 0.001). The maximum uptake was attained in tumors expressing CLDN18.2 at 48 h after injection. [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 dosimetric study showed that the effective dose in humans complies with the medical safety standards required for their clinical application. The results of treatment experiments showed that 3 MBq of [177Lu]Lu-DOTA-SF106 in CLDN18.2-expressing tumor-bearing mice could significantly inhibit tumor growth. CONCLUSION: These results indicate that radionuclide-labeled scFv-Fc molecular probes ([124I]I-SF106 and [177Lu]Lu-DOTA-SF106) provide a new possibility for the diagnosis and treatment of CLDN18.2-positive cancer patients in clinical practice.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Albumina Sérica Humana , Radioisótopos do Iodo , Sondas Moleculares , Linhagem Celular Tumoral , Claudinas
5.
ACS Pharmacol Transl Sci ; 6(12): 1829-1840, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38093841

RESUMO

Recent global clinical trials have shown that CLDN18.2 is an ideal target for the treatment of gastric cancer and that patients with high CLDN18.2 expression can benefit from targeted therapy. Therefore, accurate and comprehensive detection of CLDN18.2 expression is important for patient screening and guidance in anti-CLDN18.2 therapy. Phage display technology was used to screen CLDN18.2-specific peptides from 100 billion libraries. 293TCLDN18.1 cells were used to exclude nonspecific binding and CLDN18.1 binding sequences, while 293TCLDN18.2 cells were used to screen CLDN18.2-specific binding peptides. The monoclonal clones obtained from phage screening were sequenced, and peptides were synthesized based on the sequencing results. Binding specificity and affinity were assessed with a fluorescein isothiocyanate (FITC)-conjugated peptide. A 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated peptide was also synthesized for 68Ga radiolabeling. The in vitro and in vivo stability, partition coefficients, in vivo molecular imaging, and biodistribution were also characterized. Overall, 54 monoclonal clones were selected after phage display screening. Subsequently, based on the cell ELISA results, CLDN18.2 preference monoclonal clones were selected for deoxyribonucleic acid (DNA) sequencing, and four 7-peptide sequences were obtained after sequence comparison; among them, a peptide named T37 was further validated in vitro and in vivo. The T37 peptide specifically recognized CLDN18.2 but not CLDN18.1 and bound strongly to CLDN18.2-positive cell membranes. The 68Ga-DOTA-T37 probe exhibits good in vitro properties and high stability as a hydrophilic probe; it has high biological safety, and positron emission tomography/computed tomography (PET/CT) studies have shown that it can specifically target CLDN18.2 protein and CLDN18.2-positive tumors in mice. 68Ga-DOTA-T37 demonstrated the superiority and feasibility of using a CLDN18.2-specific probe in PCT/CT imaging, which deserves further development and exploitation.

6.
Eur J Nucl Med Mol Imaging ; 50(13): 3838-3850, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37555904

RESUMO

PURPOSE: Programmed cell death protein-1/ligand-1 (PD-1/L1) blockade has been a breakthrough in the treatment of patients with non-small cell lung cancer (NSCLC), but there is still a lack of effective methods to screen patients. Here we report a novel 68 Ga-labeled nanobody [68 Ga]Ga-THP-APN09 for PET imaging of PD-L1 status in mouse models and a first-in-human study in NSCLC patients. METHODS: [68 Ga]Ga-THP-APN09 was prepared by site-specific radiolabeling, with no further purification. Cell uptake assays were completed in the human lung adenocarcinoma cell line A549, NSCLC cell line H1975 and human PD-L1 gene-transfected A549 cells (A549PD-L1). The imaging to image PD-L1 status and biodistribution were investigated in tumor-bearing mice of these three tumor cell types. The first-in-human clinical translational trial was registered as NCT05156515. The safety, radiation dosimetry, biodistribution, and correlations of tracer uptake with immunohistochemical staining and major pathologic response (MPR) were evaluated in NSCLC patients who underwent adjuvant immunotherapy combined with chemotherapy. RESULTS: Radiosynthesis of [68 Ga]Ga-THP-APN09 was achieved at room temperature and a pH of 6.0-6.5 in 10 min with a high radiochemical yield (> 99%) and 13.9-27.8 GBq/µmol molar activity. The results of the cell uptake study reflected variable levels of surface PD-L1 expression observed by flow cytometry in the order A549PD-L1 > H1975 > A549. In small-animal PET/CT imaging, H1975 and A549PD-L1 tumors were clearly visualized in an 8.3:1 and 2.2:1 ratios over PD-L1-negative A549 tumors. Ex vivo biodistribution studies showed that tumor uptake was consistent with the PET results, with the highest A549PD-L1 being taken up the most (8.20 ± 0.87%ID/g), followed by H1975 (3.69 ± 0.50%ID/g) and A549 (0.90 ± 0.16%ID/g). Nine resectable NSCLC patients were enrolled in the clinical study. Uptake of [68 Ga]Ga-THP-APN09 was mainly observed in the kidneys and spleen, followed by low uptake in bone marrow. The radiation dose is within a reliable range. Tumor uptake was positively correlated with PD-L1 expression TPS (rs = 0.8763, P = 0.019). Tumor uptake of [68 Ga]Ga-THP-APN09 (SUVmax) in MPR patients was higher than that in non-MPR patients (median SUVmax 2.73 vs. 2.10, P = 0.036, determined with Mann-Whitney U-test). CONCLUSION: [68 Ga]Ga-THP-APN09 has the potential to be transformed into a kit-based radiotracer for rapid, simple, one-step, room temperature radiolabeling. The tracer can detect PD-L1 expression levels in tumors, and it may make it possibility to predict the response of PD-1 immunotherapy combined with chemotherapy. Confirmation in a large number of cases is needed. TRIAL REGISTRATION: Clinical Trial (NCT05156515). Registered 12 December 2021.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/terapia , Radioisótopos de Gálio , Antígeno B7-H1/metabolismo , Distribuição Tecidual , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral
7.
J Pharm Anal ; 13(4): 367-375, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37181294

RESUMO

Claudin18.2 (CLDN18.2) is a tight junction protein that is overexpressed in a variety of solid tumors such as gastrointestinal cancer and oesophageal cancer. It has been identified as a promising target and a potential biomarker to diagnose tumor, evaluate efficacy, and determine patient prognosis. TST001 is a recombinant humanized CLDN18.2 antibody that selectively binds to the extracellular loop of human Claudin18.2. In this study, we constructed a solid target radionuclide zirconium-89 (89Zr) labled-TST001 to detect the expression of in the human stomach cancer BGC823CLDN18.2 cell lines. The [89Zr]Zr-desferrioxamine (DFO)-TST001 showed high radiochemical purity (RCP, >99%) and specific activity (24.15 ± 1.34 GBq/µmol), and was stable in 5% human serum albumin, and phosphate buffer saline (>85% RCP at 96 h). The EC50 values of TST001 and DFO-TST001 were as high as 0.413 ± 0.055 and 0.361 ± 0.058 nM (P > 0.05), respectively. The radiotracer had a significantly higher average standard uptake values in CLDN18.2-positive tumors than in CLDN18.2-negative tumors (1.11 ± 0.02 vs. 0.49 ± 0.03, P = 0.0016) 2 days post injection (p.i.). BGC823CLDN18.2 mice models showed high tumor/muscle ratios 96 h p.i. with [89Zr]Zr-DFO-TST001 was much higher than those of the other imaging groups. Immunohistochemistry results showed that BGC823CLDN18.2 tumors were highly positive (+++) for CLDN18.2, while those in the BGC823 group did not express CLDN18.2 (-). The results of ex vivo biodistribution studies showed that there was a higher distribution in the BGC823CLDN18.2 tumor bearing mice (2.05 ± 0.16 %ID/g) than BGC823 mice (0.69 ± 0.02 %ID/g) and blocking group (0.72 ± 0.02 %ID/g). A dosimetry estimation study showed that the effective dose of [89Zr]Zr-DFO-TST001 was 0.0705 mSv/MBq, which is within the range of acceptable doses for nuclear medicine research. Taken together, these results suggest that Good Manufacturing Practices produced by this immuno-positron emission tomography probe can detect CLDN18.2-overexpressing tumors.

8.
Mol Pharm ; 19(11): 4382-4389, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36268880

RESUMO

Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1), the research focus in immune checkpoint regulation, play an important role in tumor immunotherapy. Inhibitors of this pathway are also the focus of tumor immunotherapy research. The PD-1/PD-L1 pathway can be blocked by selective binding to PD-L1. Clinical trials have been conducted in a variety of patients with advanced solid tumors. CS1001 is a high-affinity humanized full-length anti-PD-L1 monoclonal antibody with great clinical significance. We constructed a PD-L1-targeted radioactive molecular probe, 124/125I-labeled full-length antibody CS1001, and evaluated its binding specificity and targeting ability to PD-L1 in tumor cells and tumor models. Additionally, a comparison study with 68Ga-WL12, a PD-L1 targeting peptide, was conducted. The binding potency of 125I-CS1001 to human PD-L1 was evaluated by enzyme-linked immunosorbent assay (ELISA), and the Kd value was 52.1 ± 19.3 nM. The cellular uptake of 125I-CS1001 was examined in Chinese hamster ovary cells (CHO) and CHO expressing human PD-L1 (CHO-hPD-L1). At 2 h, the uptake values of 125I-CS1001 in CHO-hPD-L1 without blocking and in the presence of 0.1 mg non-radiolabeled CS1001 were 3.60 ± 0.08 and 0.09 ± 0.005 (%AD/2 × 105 cells, p < 0.001). Micro-PET imaging was performed between 8 to 192 h after injection of 124I-CS1001 into normal KM mice and CHO-hPD-L1 and HeLa tumor models. The standard uptake value (SUV) of relevant organs in PET images was calculated by drawing regions of interest (ROI). SUVmean of CHO-hPD-L1 tumors was significantly higher than that of HeLa tumors at 48 h (1.98 ± 0.04 vs 0.73 ± 0.14, p = 0.005). The SUVmean of 124I-CS1001 in CHO-hPD-L1 tumors at 48 h was higher than that of 68Ga-WL12 in CHO-hPD-L1 tumors at 0.5 h (1.98 ± 0.04 vs 1.09 ± 0.1 SUVmean, p = 0.007). In conclusion, this work provides a new method for monitoring and evaluating the in vivo expression of PD-L1 in tumors.


Assuntos
Iodo , Neoplasias , Cricetinae , Animais , Humanos , Camundongos , Células CHO , Radioisótopos de Gálio/química , Receptor de Morte Celular Programada 1 , Cricetulus , Anticorpos Monoclonais , Peptídeos/química , Tomografia por Emissão de Pósitrons/métodos , Linhagem Celular Tumoral
9.
Mol Pharm ; 19(10): 3623-3631, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35904514

RESUMO

Mesothelin (MSLN) is a molecular biomarker of many types of solid tumors, such as mesothelioma, pancreatic cancer, and colon cancer. Owing to the significant difference in expression between cancer cells and normal cells, mesothelin has been widely used as a key target in cancer immunotherapy. In this study, we used iodine isotope (nat/124/125I)-labeled mesothelin antibodies to noninvasively detect MSLN expression in mice with LS174T colon cancer. The 124I-labeled MSLN antibody showed a high radiochemical purity (RCP, >99%) and specific activity (20.8-67.8 GBq/µmol) after purification and was stable in 5% HSA and PBS (>95% RCP at 8 days). Western blot analysis indicated that the LS174T cells showed a higher MSLN protein level than the HepG2 cells. The half maximal effective concentration (EC50) values of the MSLN antibody and natI-anti-MSLN were 34.77 ± 3.72 ng/mL and 32.60 ± 2.52 ng/mL (P = 0.63), respectively. The dissociation constant of 124I-anti-MSLN binding to MSLN protein was 16.0 nM. The radiotracer showed a significantly higher uptake in LS174T cells than in HepG2 tumor cells (1.56 ± 0.09 vs 0.81 ± 0.03, P = 0.0016) 2 days postinjection. The LS174T mouse models showed extremely low organ uptake and high tumor uptake 96 h after the injection of 124I-anti-MSLN, and the T/M values were much higher than those of the other imaging groups (10.56 ± 1.20 for 124I-anti-MSLN in LS174T mice vs 3.27 ± 0.20 for 124I-anti-MSLN in HepG2 mice vs 3.53 ± 0.2 for 124I-IgG in LS174T mice). The immunochemical histology results showed that LS174T tumors were strongly positive (+++) for MSLN, while those in the HepG2 group showed slight expression (+). The dosimetry estimation study showed that the effective dose of 124I-anti-MSLN was 0.185 mSv/MBq, which is within the range of acceptable doses for further nuclear medicine translational research. Taken together, these results suggest that this radiotracer has the potential for detecting mesothelin-overexpressing tumors.


Assuntos
Neoplasias do Colo , Mesotelina , Animais , Linhagem Celular Tumoral , Proteínas Ligadas por GPI/metabolismo , Imunoglobulina G , Radioisótopos do Iodo , Camundongos
10.
Mol Pharm ; 19(7): 2629-2637, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35704773

RESUMO

Activated T cells played critical roles in immunotherapy and adoptive T cell therapy, and a non-invasive imaging strategy can provide us useful information concerning the transportation, accumulation, and homing of T cells in vivo. In this paper, by utilizing the long half-life radionuclide iodine-124 (124I) and CD25 specific monoclonal antibody Basiliximab, we have fabricated a novel probe, namely, 124I-Basiliximab, which was highly promising in the immuno-PET imaging of T cells. In vitro, 124I-Basiliximab had superior affinity to CD25 protein (Kd = 5.31 nM) and exhibited much higher accumulation in CD25 high-expression lymphoma cell line Karpas299 than that in CD25-negative cell line Daudi. In vivo, 124I-Basiliximab was excreted slowly from the body of mice, rendering it a relatively high effective dose (0.393 mSv/MBq) when applied in the immuno-PET imaging. In Karpas299 tumor xenograft, 124I-Basiliximab probe was observed to accumulate in the tumor quickly after tracer administration, with the optimal image acquired at 24 h post-injection. More importantly, PHA-activated hPBMC had much higher uptake of 124I-Basiliximab, indicating the potential utility of 124I-Basiliximab to discriminate activated hPBMC from its non-activated status. In summary, 124I-Basiliximab was fabricated for the first time, which can be applied in CD25-targeted immuno-PET imaging of activated T cells in vivo.


Assuntos
Neoplasias , Linfócitos T , Animais , Basiliximab , Humanos , Radioisótopos do Iodo , Camundongos , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes de Fusão
11.
Asia Pac J Ophthalmol (Phila) ; 11(3): 219-226, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35342179

RESUMO

PURPOSE: To develop and test semi-supervised generative adversarial networks (GANs) that detect retinal disorders on optical coherence tomography (OCT) images using a small-labeled dataset. METHODS: From a public database, we randomly chose a small supervised dataset with 400 OCT images (100 choroidal neovascularization, 100 diabetic macular edema, 100 drusen, and 100 normal) and assigned all other OCT images to unsupervised dataset (107,912 images without labeling). We adopted a semi-supervised GAN and a supervised deep learning (DL) model for automatically detecting retinal disorders from OCT images. The performance of the 2 models was compared in 3 testing datasets with different OCT devices. The evaluation metrics included accuracy, sensitivity, specificity, and the area under the receiver operating characteristic curves. RESULTS: The local validation dataset included 1000 images with 250 from each category. The independent clinical dataset included 366 OCT images using Cirrus OCT Shanghai Shibei Hospital and 511 OCT images using RTVue OCT from Xinhua Hospital respectively. The semi-supervised GANs classifier achieved better accuracy than supervised DL model (0.91 vs 0.86 for local cell validation dataset, 0.91 vs 0.86 in the Shanghai Shibei Hospital testing dataset, and 0.93 vs 0.92 in Xinhua Hospital testing dataset). For detecting urgent referrals (choroidal neo-vascularization and diabetic macular edema) from nonurgent referrals (drusen and normal) on OCT images, the semi-supervised GANs classifier also achieved better area under the receiver operating characteristic curves than supervised DL model (0.99 vs 0.97, 0.97 vs 0.96, and 0.99 vs 0.99, respectively). CONCLUSIONS: A semi-supervised GAN can achieve better performance than that of a supervised DL model when the labeled dataset is limited. The current study offers utility to various research and clinical studies using DL with relatively small datasets. Semi-supervised GANs can detect retinal disorders from OCT images using relatively small dataset.


Assuntos
Retinopatia Diabética , Edema Macular , Doenças Retinianas , Tomografia de Coerência Óptica , Algoritmos , China , Aprendizado Profundo , Retinopatia Diabética/diagnóstico por imagem , Humanos , Edema Macular/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem , Aprendizado de Máquina Supervisionado , Tomografia de Coerência Óptica/métodos
12.
Front Cell Dev Biol ; 9: 711894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414190

RESUMO

Hepatocellular carcinoma (HCC) is characterized by a high rate of incidence and recurrence, and resistance to chemotherapy may aggravate the poor prognosis of HCC patients. Sorafenib resistance is a conundrum to the treatment of advanced/recurrent HCC. Therefore, studies on the molecular pathogenesis of HCC and the resistance to sorafenib are of great interest. Here, we report that GINS1 was highly expressed in HCC tumors, associated with tumor grades, and predicted poor patient survival using Gene Expression Omnibus (GEO) databases exploration. Cell cycle, cell proliferation assay and in vivo xenograft mouse model indicated that knocking down GINS1 induced in G1/S phase cell cycle arrest and decreased tumor cells proliferation in vitro and in vivo. Spheroid formation assay results showed that GINS1 promoted the stem cell activity of HCC tumor cells. Furthermore, GEO database (GSE17112) analysis showed that HRAS oncogenic gene set was enriched in GINS1 high-expressed cancer cells, and quantitative real-time PCR, and Western blot results proved that GINS1 enhanced HCC progression through regulating HRAS signaling pathway. Moreover, knocking down endogenous GINS1 with shGINS1 increased the sensitivity of HCC cells to sorafenib, and restoring HRAS or stem associated pathway partly recovered the sorafenib resistance. Overall, the collective findings highlight GINS1 functions in hepatocarcinogenesis and sorafenib resistance, and indicate its potential use of GINS1 in drug-resistant HCC.

13.
Transl Vis Sci Technol ; 10(1): 33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33532144

RESUMO

Purpose: This study implements and demonstrates a deep learning (DL) approach for screening referable horizontal strabismus based on primary gaze photographs using clinical assessments as a reference. The purpose of this study was to develop and evaluate deep learning algorithms that screen referable horizontal strabismus in children's primary gaze photographs. Methods: DL algorithms were developed and trained using primary gaze photographs from two tertiary hospitals of children with primary horizontal strabismus who underwent surgery as well as orthotropic children who underwent routine refractive tests. A total of 7026 images (3829 non-strabismus from 3021 orthoptics [healthy] subjects and 3197 strabismus images from 2772 subjects) were used to develop the DL algorithms. The DL model was evaluated by 5-fold cross-validation and tested on an independent validation data set of 277 images. The diagnostic performance of the DL algorithm was assessed by calculating the accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Results: Using 5-fold cross-validation during training, the average AUCs of the DL models were approximately 0.99. In the external validation data set, the DL algorithm achieved an AUC of 0.99 with a sensitivity of 94.0% and a specificity of 99.3%. The DL algorithm's performance (with an accuracy of 0.95) in diagnosing referable horizontal strabismus was better than that of the resident ophthalmologists (with accuracy ranging from 0.81 to 0.85). Conclusions: We developed and evaluated a DL model to automatically identify referable horizontal strabismus using primary gaze photographs. The diagnostic performance of the DL model is comparable to or better than that of ophthalmologists. Translational Relevance: DL methods that automate the detection of referable horizontal strabismus can facilitate clinical assessment and screening for children at risk of strabismus.


Assuntos
Aprendizado Profundo , Estrabismo , Algoritmos , Área Sob a Curva , Criança , Humanos , Curva ROC , Estrabismo/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA