Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int Immunopharmacol ; 137: 112478, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38901243

RESUMO

Despite the groundbreaking impact of immune checkpoint blockade (ICB), response rates in non-small cell lung cancer remain modest, particularly in immune-excluded or immune-desert microenvironments. Toll-like receptor 7 (TLR7) emerges as a latent target bridging innate and adaptive immunity, offering a promising avenue for combination therapies to augment ICB efficacy. Here, we explored the anti-tumor activity of the novel oral TLR7 agonist TQ-A3334 and its potential to enhance anti-programmed death ligand 1 (PD-L1) therapy through a combination strategy in a syngeneic murine lung cancer model. Oral administration of TQ-A3334 significantly alleviated tumor burden in C57BL/6J mice, modulated by type I interferon (IFN), and exhibited low toxicity. This therapy elicited activation of both innate and adaptive immune cells in tumor tissue, particularly increasing the abundance of CD8+ TILs through type I IFN pathway and subsequent CXCL10 expression. In vitro examinations validated that IFN-α-stimulated tumor cells exhibited increased secretion of CXCL10, conducive to the promoted trafficking of CD8+ T cells. Furthermore, combining TQ-A3334 with anti-PD-L1 treatment exceeded tumor control, with a further increase in CD8+ TIL frequency compared to monotherapy. These findings suggest that TQ-A3334 can mobilize innate immunity and promote T cell recruitment into the tumor microenvironment; a combination of TQ-A3334 and anti-PD-L1 antibodies can intensify the sensitivity of tumors to anti-PD-L1 therapy, which demonstrates significant potential for treating poorly immune-infiltrated lung cancer.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Interferon Tipo I , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Receptor 7 Toll-Like , Receptor 7 Toll-Like/agonistas , Animais , Interferon Tipo I/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Administração Oral , Sinergismo Farmacológico , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Imunidade Inata/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos
2.
Cell Death Discov ; 10(1): 240, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762546

RESUMO

Interactions of tumor cells with immune cells in the tumor microenvironment play an important role during malignancy progression. We previously identified that GAS5 inhibited tumor development by suppressing proliferation of tumor cells in non-small cell lung cancer (NSCLC). Herein, we discovered a tumor-suppressing role for tumor cell-derived GAS5 in regulating tumor microenvironment. GAS5 positively coordinated with the infiltration of macrophages and T cells in NSCLC clinically, and overexpression of GAS5 promoted macrophages and T cells recruitment both in vitro and in vivo. Mechanistically, GAS5 stabilized p53 by directly binding to MYBBP1A and facilitating MYBBP1A-p53 interaction, and enhanced p53-mediated transcription of IRF1, which activated type I interferon signaling and increased the production of downstream CXCL10 and CCL5. We also found that activation of type I interferon signaling was associated with better immunotherapy efficacy in NSCLC. Furthermore, the stability of GAS5 was regulated by NAT10, the key enzyme responsible for N4-acetylcytidine (ac4C) modification, which bound to GAS5 and mediated its ac4C modification. Collectively, tumor cell-derived GAS5 could activate type I interferon signaling via the MYBBP1A-p53/IRF1 axis, promoting immune cell infiltration and potentially correlating with immunotherapy efficacy, which suppressed NSCLC progression. Our results suggested GAS5 as a promising predictive marker and potential therapeutic target for combination therapy in NSCLC. A schematic diagram demonstrating the regulatory effect of GAS5 on immune cell infiltration by activating type I interferon signaling via MYBBP1A-p53/IRF1 axis in non-small cell lung cancer. IFN, interferon.

3.
Adv Sci (Weinh) ; 10(21): e2206801, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37310417

RESUMO

Microvascular endothelial cells (MiVECs) impair angiogenic potential, leading to microvascular rarefaction, which is a characteristic feature of chronic pressure overload-induced cardiac dysfunction. Semaphorin3A (Sema3A) is a secreted protein upregulated in MiVECs following angiotensin II (Ang II) activation and pressure overload stimuli. However, its role and mechanism in microvascular rarefaction remain elusive. The function and mechanism of action of Sema3A in pressure overload-induced microvascular rarefaction, is explored, through an Ang II-induced animal model of pressure overload. RNA sequencing, immunoblotting analysis, enzyme-linked immunosorbent assay, quantitative reverse transcription polymerase chain reaction (qRT-PCR), and immunofluorescence staining results indicate that Sema3A is predominantly expressed and significantly upregulated in MiVECs under pressure overload. Immunoelectron microscopy and nano-flow cytometry analyses indicate small extracellular vesicles (sEVs), with surface-attached Sema3A, to be a novel tool for efficient release and delivery of Sema3A from the MiVECs to extracellular microenvironment. To investigate pressure overload-mediated cardiac microvascular rarefaction and cardiac fibrosis in vivo, endothelial-specific Sema3A knockdown mice are established. Mechanistically, serum response factor (transcription factor) promotes the production of Sema3A; Sema3A-positive sEVs compete with vascular endothelial growth factor A to bind to neuropilin-1. Therefore, MiVECs lose their ability to respond to angiogenesis. In conclusion, Sema3A is a key pathogenic mediator that impairs the angiogenic potential of MiVECs, which leads to cardiac microvascular rarefaction in pressure overload-induced heart disease.


Assuntos
Cardiopatias , Rarefação Microvascular , Animais , Camundongos , Células Endoteliais/metabolismo , Semaforina-3A/genética , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular
4.
BMC Med ; 20(1): 426, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36345004

RESUMO

BACKGROUND: Currently, immunotherapy is widely used in the treatment of various stages of non-small cell lung cancer. According to clinical experience and results of previous studies, immunotherapy as neoadjuvant therapy seems to exhibit better efficacy against early resectable non-small cell lung cancer as compared to advanced lung cancer, which is often defined as unresectable non-small cell lung cancer. However, this observation has not been established in clinical studies. This systematic review aimed to evaluate the efficacy of immunotherapy in early and late lung cancer, wherein objective response rate (ORR) and disease control rate (DCR) were used as evaluation indexes. The present study also evaluated the safety of immunotherapy in early and late lung cancer, wherein the rate of treatment-related adverse reactions (TRAEs) was used as an indicator. METHODS: Electronica databases, including PubMed, Cochrane Library, Embase, and other databases, were searched to identify relevant studies. Besides this, all the available reviews, abstracts, and meeting reports from the main international lung cancer meetings were searched manually. ORR, DCR, and TRAEs were extracted as the primary outcomes. RESULTS: A total of 52 randomized controlled trials involving 13,660 patients were shortlisted. It was observed that immunotherapy alone significantly improved DCR in early lung cancer in comparison to advanced lung cancer. Importantly, the improvement in ORR was not to the same extent as reported in the case of advanced lung cancer. The combination of immunotherapy with other therapies, especially immunochemotherapy, significantly improved ORR and DCR in early lung cancer. In terms of safety, immunotherapy either alone or in combination with other therapies exhibited a better safety profile in early lung cancer than in advanced lung cancer. CONCLUSIONS: Altogether, the benefits of immunotherapy in early lung cancer appeared to be better than those observed in advanced lung cancer, especially with the regard to the regimen of immunotherapy in combination with chemotherapy. In terms of safety, both immunotherapy alone and its combination with chemotherapy were found to be safer in early lung cancer as compared to advanced lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Immunology ; 167(4): 495-507, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35859099

RESUMO

The stimulator of interferon genes (STING) pathway is important for anticancer immune responses. However, the relative contributions of host and tumour STING in anti-programmed cell death protein 1 (anti-PD-1) inhibitor responses in non-small cell lung cancer (NSCLC) are unknown. STING expression in tumour and blood was associated with anti-PD-1 therapy in NSCLC patients; Moreover, loss of PD-1 inhibitor therapeutic potency was demonstrated in STING KO (knock out) splenocytes and STING KO mice. STING knock-down in tumour cells had no effect. STING on CD8+ T cells and host cells, not tumour cells, correlated with clinical effect of anti-PD-1 therapy in NSCLC patients. Finally, adoptive transfer of CD8+ T cells restored PD-1 inhibitor anticancer effects. STING in host cells but not in tumour cells mediates anti-PD-1 inhibitor responses in cancer immunotherapy and could be used to select advantageous NSCLC patients from immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico , Linfócitos T CD8-Positivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Imunoterapia , Interferons , Morte Celular , Antígeno B7-H1
6.
Med Oncol ; 39(10): 140, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35834140

RESUMO

N-acetyltransferase 10 (NAT10) is a nucleolar acetyltransferase and has been reported to facilitate tumorigenesis in various cancers, but its role in NSCLC and how it is regulated remain to be assessed. The expression of NAT10 was explored in online databases and our collected clinical specimens. The relationship of NAT10 and clinical characteristics was evaluated using the online databases. Functional analyses were utilized to determine the effect of NAT10 on the proliferation and migration abilities. KEGG pathway analyses were conducted to investigate NAT10-related pathways in NSCLC. The influence of NAT10 on cell cycle was assessed by flow cytometry and cell synchronization assay. The association between c-myc and NAT10 promoter was determined by ChIP. Compared with normal tissue, NAT10 was significantly overexpressed in NSCLC. Upregulated NAT10 was associated with more advanced stage for lung adenocarcinoma and shorter overall survival and first progression time for lung cancer. NAT10 could promote proliferation and migration of NSCLC cells in vitro. c-myc positively regulated the expression of NAT10 as a transcription factor. KEGG pathway analyses indicated that NAT10 was significantly involved in cell cycle regulation, cytokine-cytokine receptor interaction and other pathways. The knockdown of NAT10-induced G1 arrest, which was possibly mediated by the downregulation of cyclin D1.Our findings suggested that c-myc-mediated upregulation of NAT10 promoted the proliferation and migration of NSCLC cells and NAT10 might be a marker for prognosis and a promising target for treatment in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclo Celular , Neoplasias Pulmonares , Acetiltransferases N-Terminal , Proteínas Proto-Oncogênicas c-myc , Acetiltransferases/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima
7.
J Mol Cell Cardiol ; 166: 91-106, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35235835

RESUMO

Adult mammals have limited potential for cardiac regeneration after injury. In contrast, neonatal mouse heart, up to 7 days post birth, can completely regenerate after injury. Therefore, identifying the key factors promoting the proliferation of endogenous cardiomyocytes (CMs) is a critical step in the development of cardiac regeneration therapies. In our previous study, we predicted that mitogen-activated protein kinase (MAPK) interacting serine/threonine-protein kinase 2 (MNK2) has the potential of promoting regeneration by using phosphoproteomics and iGPS algorithm. Here, we aimed to clarify the role of MNK2 in cardiac regeneration and explore the underlying mechanism. In vitro, MNK2 overexpression promoted, and MNK2 knockdown suppressed cardiomyocyte proliferation. In vivo, inhibition of MNK2 in CMs impaired myocardial regeneration in neonatal mice. In adult myocardial infarcted mice, MNK2 overexpression in CMs in the infarct border zone activated cardiomyocyte proliferation and improved cardiac repair. In CMs, MNK2 binded to eIF4E and regulated its phosphorylation level. Knockdown of eukaryotic translation initiation factor (eIF4E) impaired the proliferation-promoting effect of MNK2 in CMs. MNK2-eIF4E axis stimulated CMs proliferation by activating cyclin D1. Our study demonstrated that MNK2 kinase played a critical role in cardiac regeneration. Over-expression of MNK2 promoted cardiomyocyte proliferation in vitro and in vivo, at least partly, by activating the eIF4E-cyclin D1 axis. This investigation identified a novel target for heart regenerative therapy.


Assuntos
Fator de Iniciação 4E em Eucariotos , Infarto do Miocárdio , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Ciclina D1/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Mamíferos/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Fosforilação
8.
Am J Transl Res ; 14(12): 8457-8472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36628246

RESUMO

Distinguishing between N6-methyladenosine (m6A)-associated long noncoding RNAs (lncRNAs) is crucial in non-small-cell lung cancer (NSCLC) patients. In this research, the prognosis and immunotherapeutic response of lncRNAs and m6A in NSCLC were examined. lncRNAs related to m6A were identified using co-expression analyses, and their prognostic impact on patients with NSCLC was assessed using univariate Cox regression analysis. Sixty-three m6A-associated lncRNAs were determined as prognostic lncRNAs, and on this basis, 25 m6A-associated lncRNAs were screened by least absolute shrinkage and selection operator (lasso) Cox regression. Multivariable Cox analysis obtained 14 m6A-associated lncRNAs for the construction of risk model. The NSCLC patients were grouped into different risk subgroups in accordance with the median of the risk fraction in each data, and we evaluated the differences of potential immunotherapeutic characteristics and drug sensitivity prediction between the two subgroups. By using this model to recombine patients, they can be effectively distinguished in terms of the immunotherapy response. Furthermore, candidate compounds for the differentiation of NSCLC subtypes were identified. The model based on 14 m6A-associated lncRNAs is a promising prognostic biomarker, which may help to predict the efficacy of immunotherapy in NSCLC patients and provide a theoretical basis for improving the outcome of patients.

9.
J Am Heart Assoc ; 10(22): e022802, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34726469

RESUMO

Background The neonatal heart maintains its entire regeneration capacity within days after birth. Using quantitative phosphoproteomics technology, we identified that SGK3 (serine/threonine-protein kinase 3) in the neonatal heart is highly expressed and activated after myocardial infarction. This study aimed to uncover the function and related mechanisms of SGK3 on cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. Methods and Results The effect of SGK3 on proliferation and oxygen glucose deprivation/reoxygenation- induced apoptosis in isolated cardiomyocytes was evaluated using cardiomyocyte-specific SGK3 overexpression or knockdown adenovirus5 vector. In vivo, gain- and loss-of-function experiments using cardiomyocyte-specific adeno-associated virus 9 were performed to determine the effect of SGK3 in cardiomyocyte proliferation and cardiac repair after apical resection or ischemia/reperfusion injury. In vitro, overexpression of SGK3 enhanced, whereas knockdown of SGK3 decreased, the cardiomyocyte proliferation ratio. In vivo, inhibiting the expression of SGK3 shortened the time window of cardiac regeneration after apical resection in neonatal mice, and overexpression of SGK3 significantly promoted myocardial repair and cardiac function recovery after ischemia/reperfusion injury in adult mice. Mechanistically, SGK3 promoted cardiomyocyte regeneration and myocardial repair after cardiac injury by inhibiting GSK-3ß (glycogen synthase kinase-3ß) activity and upregulating ß-catenin expression. SGK3 also upregulated the expression of cell cycle promoting genes G1/S-specific cyclin-D1, c-myc (cellular-myelocytomatosis viral oncogene), and cdc20 (cell division cycle 20), but downregulated the expression of cell cycle negative regulators cyclin kinase inhibitor P 21 and cyclin kinase inhibitor P 27. Conclusions Our study reveals a key role of SGK3 on cardiac repair after apical resection or ischemia/reperfusion injury, which may reopen a novel therapeutic option for myocardial infarction.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Infarto do Miocárdio , Traumatismo por Reperfusão , Animais , Apoptose , Camundongos , Infarto do Miocárdio/genética , Miócitos Cardíacos , Proteínas Serina-Treonina Quinases/genética , Serina/química , Treonina/química , beta Catenina/genética
10.
Cancer Cell Int ; 21(1): 428, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391435

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations will inevitably develop drug resistance after being treated with the third-generation EGFR-tyrosine kinase inhibitor (TKI), osimertinib. Recently, the drug resistance information transmitted by exosomal miRNAs has attracted much attention. However, the mechanism of exosome-derived miRNAs in osimertinib resistance remains unexplored. METHODS: We extracted and sequenced exosomes from the supernatant of the osimertinib-resistant cell line, H1975-OR, and the sensitive cell line, H1975. The results were compared with plasma exosome sequencing before and after the appearance of drug resistance in three NSCLC clinical patients treated with oral osimertinib. Exosome-derived miRNAs that had significantly increased expression levels after osimertinib resistance were screened for expanded validation in other 64 NSCLC patients. RESULTS: Cluster analysis of the target genes revealed that exosomal miRNAs participate in osimertinib resistance mechanisms through the activation of bypass pathways (RAS-MAPK pathway abnormality and PI3K pathway activation). Exosome-derived miR-184 and miR-3913-5p expression levels increased significantly after the onset of osimertinib resistance. Exosomal miR-3913-5p was associated with TNM stage, platelet count, tumor marker carcinoembryonic antigen, and distant metastases. In patients with EGFR exon 21 L858R mutation, the increased expression levels of miR-184 and miR-3913-5p derived from serum exosomes indicated osimertinib resistance. Similarly, for T790M-positive patients, the level of exosome-derived miR-3913-5p can be used as a predictive marker for osimertinib resistance. CONCLUSIONS: The expression levels of miR-184 and miR-3913-5p derived from exosomes in the peripheral blood of NSCLC patients could be used as biomarkers to indicate osimertinib resistance.

11.
J Thorac Dis ; 13(6): 3708-3720, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34277062

RESUMO

Human epidermal growth factor receptor 2 (HER2), as a receptor tyrosine kinase of EGF receptor family, whose mutation is often associated with even if less frequency but poor prognosis and shorter survival in pulmonary malignant tumor. HER2 status include mutation, overexpression, amplification and also some rare genotypes, detected by next generation sequencing (NGS), immunohistochemistry (IHC), and also fluorescence in situ hybridization (FISH). Different genotypes represent different therapeutic targets and indicate different clinical prognosis concluded by previous studies. Unfortunately, no standard guidelines for first-line treatment are widely recognized, and current therapeutic schedules include chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Especially for patients with advanced metastasis, chemotherapy is based as a systemic therapy using studies of breast cancer or EGFR-positive lung adenocarcinoma as a template. Studies already explored treatment including EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and afatinib, and also trastuzumab and its conjugation like HER2-targeted antibody-drug conjugate trastuzumab emtansine (T-DM1) and conjugate trastuzumab deruxtecan (T-DXd). Also, he researches explored combination therapy with chemotherapy and TKIs or monoclonal antibodies. This review describes commonly used therapies for HER2-positive/HER2-overexpression patients and general relationship between genotypes of HER2, drug selection and final prognosis in order to provide suggestions for future diagnosis and treatment.

12.
Biomark Res ; 9(1): 47, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112258

RESUMO

Metastasis suggests a poor prognosis for cancer patients, and treatment strategies for metastatic cancer are still very limited. Numerous studies have shown that cancer-associated fibroblasts (CAFs), a large component of the tumor microenvironment, contribute to tumor metastasis. Stromal fibroblasts at metastatic sites are different from CAFs within primary tumors and can be termed metastasis-associated fibroblasts (MAFs), and they also make great contributions to the establishment of metastatic lesions and the therapeutic resistance of metastatic tumors. MAFs are capable of remodeling the extracellular matrix of metastatic tumors, modulating immune cells in the tumor microenvironment, promoting angiogenesis and enhancing malignant tumor phenotypes. Thus, MAFs can help establish premetastatic niches and mediate resistance to therapeutic strategies, including immunotherapy and antiangiogenic therapy. The results of preclinical studies suggest that targeting MAFs can alleviate the progression of metastatic cancer and mitigate therapeutic resistance, indicating that MAFs are a promising target for metastatic cancer. Here, we comprehensively summarize the existing evidence on MAFs and discuss their origins, generation, functions and related therapeutic strategies in an effort to provide a better understanding of MAFs and offer treatment perspectives for metastatic cancer.

13.
Front Oncol ; 11: 596542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828970

RESUMO

Although anti-PD-1 inhibitors exhibit impressive clinical results in non-small cell lung cancer (NSCLC) cases, a substantial percentage of patients do not respond to this treatment. Moreover, the current recommended biomarkers are not perfect. Therefore, it is essential to discover novel molecular determinants of responses to anti-PD-1 inhibitors. We performed Whole Exome Sequencing (WES) in a cohort of 33 Chinese NSCLC patients. Patients were classified into the durable clinical benefit (DCB) and no durable benefit (NDB) groups. Infiltrating CD8+ cells in the tumor microenvironment (TME) were investigated by immunohistochemistry. We also used public datasets to validate our results. In our cohort, good clinical responses to anti-PD-1 inhibitors were more pronounced in younger patients with lower Eastern Cooperative Oncology Group (ECOG) scores and only extra-pulmonary metastasis. More importantly, we identified a novel MUC19 mutation, which was significantly enriched in DCB patients (P = 0.015), and MUC19-mutated patients had a longer progression-free survival (PFS) (hazard ratio = 0.3, 95% CI 0.1-0.9; P = 0.026). Immunohistochemistry results indicated that the MUC19 mutation was associated with increased infiltration by CD8+ T cells in the TME (P = 0.0313). When combining MUC19 mutation with ECOG scores and intra-pulmonary metastasis status, patients with more positive predictors had longer PFS (P = 0.003). Furthermore, MUC19 mutation was involved in immune responses and associated with a longer PFS in the Memorial Sloan-Kettering Cancer Center (MSKCC) cohort. Collectively, we identified that MUC19 mutations were involved in immune responses, and NSCLC tumors harboring mutated MUC19 exhibited good responses to anti-PD-1 inhibitors.

14.
Signal Transduct Target Ther ; 6(1): 28, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33479196

RESUMO

The immune system initiates robust immune responses to defend against invading pathogens or tumor cells and protect the body from damage, thus acting as a fortress of the body. However, excessive responses cause detrimental effects, such as inflammation and autoimmune diseases. To balance the immune responses and maintain immune homeostasis, there are immune checkpoints to terminate overwhelmed immune responses. Pathogens and tumor cells can also exploit immune checkpoint pathways to suppress immune responses, thus escaping immune surveillance. As a consequence, therapeutic antibodies that target immune checkpoints have made great breakthroughs, in particular for cancer treatment. While the overall efficacy of immune checkpoint blockade (ICB) is unsatisfactory since only a small group of patients benefited from ICB treatment. Hence, there is a strong need to search for other targets that improve the efficacy of ICB. Ubiquitination is a highly conserved process which participates in numerous biological activities, including innate and adaptive immunity. A growing body of evidence emphasizes the importance of ubiquitination and its reverse process, deubiquitination, on the regulation of immune responses, providing the rational of simultaneous targeting of immune checkpoints and ubiquitination/deubiquitination pathways to enhance the therapeutic efficacy. Our review will summarize the latest findings of ubiquitination/deubiquitination pathways for anti-tumor immunity, and discuss therapeutic significance of targeting ubiquitination/deubiquitination pathways in the future of immunotherapy.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade/imunologia , Neoplasias/imunologia , Ubiquitinação/imunologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas de Checkpoint Imunológico/imunologia , Imunoterapia , Inflamação/imunologia
15.
Transl Lung Cancer Res ; 9(3): 446-458, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32676309

RESUMO

BACKGROUND: Exudative pleural effusion (EPE) is a common diagnostic challenge. The utility of medical thoracoscopy (MT) and closed pleural biopsy (CPB) to aid in the diagnosis of EPE has been reported in many published studies. Herein, we perform a systematic review and meta-analysis to compare the diagnostic yield and safety of CPB and MT in EPE. METHODS: Four databases were searched for studies reporting the diagnostic yield of CPB and MT for EPE. The quality of the included studies was evaluated according to the quality assessment of diagnostic accuracy studies (QUADAS) tool. The pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and complication risks were compared between the two groups. RESULTS: Ten studies dealing with CPB and twenty-three studies dealing with MT for the diagnosis of EPE were included in this meta-analysis. Pooled sensitivity, specificity, PLR, NLR and DOR of CPB group was 77%, 99%, 32.55, 0.22, 165.71, respectively, while pooled sensitivity, specificity, PLR, NLR and DOR of MT group was 93%, 100%, 10.82, 0.08, 162.81, respectively. The area under the summary receiver operating characteristic (SROC) curve of CPB and MT were both 0.97. The ability of CPB to diagnose non-malignant diseases was like MT (69% vs. 68%), while the ability was lower than that of MT to diagnose malignant diseases (72% vs. 92%). The pooled diagnostic accuracy of CPB and MT for mesothelioma was 26% (95% CI, 14-38%) and 42% (95% CI, 22-62%) (P<0.001), respectively. The rate of complications with CBP was lower than that reported for MT. CONCLUSIONS: CBP is a relatively accurate tool with a lower complication rate compared to MT in the diagnosis of EPE, especially in diagnosing non-malignant diseases. We confirm the utility of MT in the diagnostic workup of malignancy (especially mesothelioma); however, in selected cases, CPB could be used as the first diagnostic approach with a favorable safety profile.

16.
Circulation ; 141(19): 1554-1569, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32098494

RESUMO

BACKGROUND: In mammals, regenerative therapy after myocardial infarction is hampered by the limited regenerative capacity of adult heart, whereas a transient regenerative capacity is maintained in the neonatal heart. Systemic phosphorylation signaling analysis on ischemic neonatal myocardium might be helpful to identify key pathways involved in heart regeneration. Our aim was to define the kinase-substrate network in ischemic neonatal myocardium and to identify key pathways involved in heart regeneration after ischemic insult. METHODS: Quantitative phosphoproteomics profiling was performed on infarct border zone of neonatal myocardium, and kinase-substrate network analysis revealed 11 kinases with enriched substrates and upregulated phosphorylation levels, including checkpoint kinase 1 (CHK1) kinase. The effect of CHK1 on cardiac regeneration was tested on Institute of Cancer Research CD1 neonatal and adult mice that underwent apical resection or myocardial infarction. RESULTS: In vitro, CHK1 overexpression promoted whereas CHK1 knockdown blunted cardiomyocyte proliferation. In vivo, inhibition of CHK1 hindered myocardial regeneration on resection border zone in neonatal mice. In adult myocardial infarction mice, CHK1 overexpression on infarct border zone upregulated mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway, promoted cardiomyocyte proliferation, and improved cardiac function. Inhibiting mammalian target of rapamycin activity by rapamycin blunted the neonatal cardiomyocyte proliferation induced by CHK1 overexpression in vitro. CONCLUSIONS: Our study indicates that phosphoproteome of neonatal regenerative myocardium could help identify important signaling pathways involved in myocardial regeneration. CHK1 is found to be a key signaling responsible for neonatal regeneration. Myocardial overexpression of CHK1 could improve cardiac regeneration in adult hearts by activating the mammalian target of rapamycin C1/ribosomal protein S6 kinase b-1 pathway. Thus, CHK1 might serve as a potential novel target in myocardial repair after myocardial infarction.


Assuntos
Proliferação de Células , Quinase 1 do Ponto de Checagem/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Infarto do Miocárdio/enzimologia , Miocárdio/enzimologia , Proteoma , Regeneração , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Células Cultivadas , Quinase 1 do Ponto de Checagem/genética , Modelos Animais de Doenças , Camundongos Endogâmicos ICR , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Fosforilação , Transdução de Sinais
17.
Transl Lung Cancer Res ; 9(6): 2469-2478, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489807

RESUMO

Small cell lung cancer (SCLC) is one of the malignant cancers of lung tumors, and hyponatremia, defined as serum sodium concentration (Na+) lower than 135 mmol/L, is the most common complication of solid tumors, with an incidence of up to 18.9% and a negative impact on quality of life in SCLC. As a prognostic index of SCLC, timely monitoring and correcting of hyponatremia is of great clinical significance for prolonging the survival period of patients. In the explore of new drugs for small cell lung cancer, it is necessary to include hyponatremia as an evaluation index in clinical studies. As the occurrence of hyponatremia is sometimes unavoidable owing to SCLC specific neurological characteristics, early monitoring to detect the presence of hyponatremia and timely correction are helpful to improve the prognosis of patients. There are many predisposing factors for hyponatremia, including heterotopia of antidiuretic hormone (ADH), use of platinum-based chemotherapy drugs, and intracranial metastasis, among others. Patients with small cell lung cancer are usually asymptomatic in the early stage, while it is of great significance to find a suitable clinical index to judge whether it is a malignant inducement or not. In the clinical setting, due to different electrolyte levels and therapeutic scheduling for the primary disease, an individualized plan is often made, mainly comprising water restriction, infusion, and medications. This review includes related clinical studies and describes the common symptoms and predisposing factors of hyponatremia in patients with SCLC, and their impact on quality of life and prognosis.

18.
Transl Lung Cancer Res ; 8(3): 214-226, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31367535

RESUMO

BACKGROUND: Neutrophil-to-lymphocyte ratio (NLR) is related to prognosis in non-small cell lung cancer (NSCLC). However, no consensus on the relationship of pretreatment NLR and survival outcomes of systemic therapy in NSCLC exists. This meta-analysis investigated the prognostic role of pretreatment NLR during systemic therapy for NSCLC, including chemotherapy, immunotherapy and targeted therapy. METHODS: PubMed, Web of Science and Cochrane Library databases were systematically searched up to April 09, 2019. Hazard ratios (HRs) with their 95% confidence intervals (CIs) were pooled to investigate the association of pretreatment NLR with progression-free survival (PFS) and overall survival (OS). RESULTS: In total, 27 articles with 4,298 participants were selected. The pooled results showed that elevated pretreatment NLR was associated with inferior PFS (HR, 1.45, 95% CI, 1.28-1.66) and OS (HR, 1.63, 95% CI, 1.43-1.84) during systemic therapy. Subgroup analyses according to the treatment strategy suggested that higher pretreatment NLR was significantly associated with shorter survival in all therapies, including chemotherapy (PFS HR, 1.74, 95% CI, 1.39-2.17; OS HR, 1.73, 95% CI, 1.26-2.36), immunotherapy (PFS HR, 1.53, 95% CI, 1.27-1.84; OS HR, 2.50, 95% CI, 1.60-3.89) and targeted therapy (PFS HR, 1.53, 95% CI, 1.04-2.25; OS HR, 1.92, 95% CI, 1.14-3.24). CONCLUSIONS: Pretreatment NLR is a promising prognostic indicator for NSCLC patients receiving systemic therapy, including chemotherapy, immunotherapy and targeted therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA