Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Thorac Oncol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38070597

RESUMO

INTRODUCTION: Pathologic response (PathR) by histopathologic assessment of resected specimens may be an early clinical end point associated with long-term outcomes with neoadjuvant therapy. Digital pathology may improve the efficiency and precision of PathR assessment. LCMC3 (NCT02927301) evaluated neoadjuvant atezolizumab in patients with resectable NSCLC and reported a 20% major PathR rate. METHODS: We determined PathR in primary tumor resection specimens using guidelines-based visual techniques and developed a convolutional neural network model using the same criteria to digitally measure the percent viable tumor on whole-slide images. Concordance was evaluated between visual determination of percent viable tumor (n = 151) performed by one of the 47 local pathologists and three central pathologists. RESULTS: For concordance among visual determination of percent viable tumor, the interclass correlation coefficient was 0.87 (95% confidence interval [CI]: 0.84-0.90). Agreement for visually assessed 10% or less viable tumor (major PathR [MPR]) in the primary tumor was 92.1% (Fleiss kappa = 0.83). Digitally assessed percent viable tumor (n = 136) correlated with visual assessment (Pearson r = 0.73; digital/visual slope = 0.28). Digitally assessed MPR predicted visually assessed MPR with outstanding discrimination (area under receiver operating characteristic curve, 0.98) and was associated with longer disease-free survival (hazard ratio [HR] = 0.30; 95% CI: 0.09-0.97, p = 0.033) and overall survival (HR = 0.14, 95% CI: 0.02-1.06, p = 0.027) versus no MPR. Digitally assessed PathR strongly correlated with visual measurements. CONCLUSIONS: Artificial intelligence-powered digital pathology exhibits promise in assisting pathologic assessments in neoadjuvant NSCLC clinical trials. The development of artificial intelligence-powered approaches in clinical settings may aid pathologists in clinical operations, including routine PathR assessments, and subsequently support improved patient care and long-term outcomes.

2.
Mod Pathol ; 36(6): 100124, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841434

RESUMO

Ulcerative colitis is a chronic inflammatory bowel disease that is characterized by a relapsing and remitting course. Assessment of disease activity critically informs treatment decisions. In addition to endoscopic remission, histologic remission is emerging as a treatment target and a key factor in the evaluation of disease activity and therapeutic efficacy. However, manual pathologist evaluation is semiquantitative and limited in granularity. Machine learning approaches are increasingly being developed to aid pathologists in accurate and reproducible scoring of histology, enabling precise quantitation of clinically relevant features. Here, we report the development and validation of convolutional neural network models that quantify histologic features pertinent to ulcerative colitis disease activity, directly from hematoxylin and eosin-stained whole slide images. Tissue and cell model predictions were used to generate quantitative human-interpretable features to fully characterize the histology samples. Tissue and cell predictions showed comparable agreement to pathologist annotations, and the extracted slide-level human-interpretable features demonstrated strong correlations with disease severity and pathologist-assigned Nancy histological index scores. Moreover, using a random forest classifier based on 13 human-interpretable features derived from the tissue and cell models, we were able to accurately predict Nancy histological index scores, with a weighted kappa (κ = 0.91) and Spearman correlation (⍴ = 0.89, P < .001) when compared with pathologist consensus Nancy histological index scores. We were also able to predict histologic remission, based on the absence of neutrophil extravasation, with a high accuracy of 0.97. This work demonstrates the potential of computer vision to enable a standardized and robust assessment of ulcerative colitis histopathology for translational research and improved evaluation of disease activity and prognosis.


Assuntos
Colite Ulcerativa , Doenças Inflamatórias Intestinais , Humanos , Colite Ulcerativa/tratamento farmacológico , Inteligência Artificial , Índice de Gravidade de Doença , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Colonoscopia
3.
Mod Pathol ; 35(11): 1529-1539, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35840720

RESUMO

Assessment of programmed death ligand 1 (PD-L1) expression by immunohistochemistry (IHC) has emerged as an important predictive biomarker across multiple tumor types. However, manual quantitation of PD-L1 positivity can be difficult and leads to substantial inter-observer variability. Although the development of artificial intelligence (AI) algorithms may mitigate some of the challenges associated with manual assessment and improve the accuracy of PD-L1 expression scoring, use of AI-based approaches to oncology biomarker scoring and drug development has been sparse, primarily due to the lack of large-scale clinical validation studies across multiple cohorts and tumor types. We developed AI-powered algorithms to evaluate PD-L1 expression on tumor cells by IHC and compared it with manual IHC scoring in urothelial carcinoma, non-small cell lung cancer, melanoma, and squamous cell carcinoma of the head and neck (prospectively determined during the phase II and III CheckMate clinical trials). 1,746 slides were retrospectively analyzed, the largest investigation of digital pathology algorithms on clinical trial datasets performed to date. AI-powered quantification of PD-L1 expression on tumor cells identified more PD-L1-positive samples compared with manual scoring at cutoffs of ≥1% and ≥5% in most tumor types. Additionally, similar improvements in response and survival were observed in patients identified as PD-L1-positive compared with PD-L1-negative using both AI-powered and manual methods, while improved associations with survival were observed in patients with certain tumor types identified as PD-L1-positive using AI-powered scoring only. Our study demonstrates the potential for implementation of digital pathology-based methods in future clinical practice to identify more patients who would benefit from treatment with immuno-oncology therapy compared with current guidelines using manual assessment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células de Transição , Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Humanos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Nivolumabe/uso terapêutico , Ipilimumab , Inteligência Artificial , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Anticorpos Monoclonais/uso terapêutico , Biomarcadores Tumorais/metabolismo
4.
Hepatology ; 74(6): 3146-3160, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34333790

RESUMO

BACKGROUND AND AIMS: The hepatic venous pressure gradient (HVPG) is the standard for estimating portal pressure but requires expertise for interpretation. We hypothesized that HVPG could be extrapolated from liver histology using a machine learning (ML) algorithm. APPROACH AND RESULTS: Patients with NASH with compensated cirrhosis from a phase 2b trial were included. HVPG and biopsies from baseline and weeks 48 and 96 were reviewed centrally, and biopsies evaluated with a convolutional neural network (PathAI, Boston, MA). Using trichrome-stained biopsies in the training set (n = 130), an ML model was developed to recognize fibrosis patterns associated with HVPG, and the resultant ML HVPG score was validated in a held-out test set (n = 88). Associations between the ML HVPG score with measured HVPG and liver-related events, and performance of the ML HVPG score for clinically significant portal hypertension (CSPH) (HVPG ≥ 10 mm Hg), were determined. The ML-HVPG score was more strongly correlated with HVPG than hepatic collagen by morphometry (ρ = 0.47 vs. ρ = 0.28; P < 0.001). The ML HVPG score differentiated patients with normal (0-5 mm Hg) and elevated (5.5-9.5 mm Hg) HVPG and CSPH (median: 1.51 vs. 1.93 vs. 2.60; all P < 0.05). The areas under receiver operating characteristic curve (AUROCs) (95% CI) of the ML-HVPG score for CSPH were 0.85 (0.80, 0.90) and 0.76 (0.68, 0.85) in the training and test sets, respectively. Discrimination of the ML-HVPG score for CSPH improved with the addition of a ML parameter for nodularity, Enhanced Liver Fibrosis, platelets, aspartate aminotransferase (AST), and bilirubin (AUROC in test set: 0.85; 95% CI: 0.78, 0.92). Although baseline ML-HVPG score was not prognostic, changes were predictive of clinical events (HR: 2.13; 95% CI: 1.26, 3.59) and associated with hemodynamic response and fibrosis improvement. CONCLUSIONS: An ML model based on trichrome-stained liver biopsy slides can predict CSPH in patients with NASH with cirrhosis.


Assuntos
Hipertensão Portal/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/complicações , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Biópsia , Ensaios Clínicos Fase II como Assunto , Diagnóstico Diferencial , Feminino , Humanos , Hipertensão Portal/etiologia , Cirrose Hepática/patologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/patologia , Pressão na Veia Porta , Prognóstico , Curva ROC , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Nat Commun ; 12(1): 1613, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712588

RESUMO

Computational methods have made substantial progress in improving the accuracy and throughput of pathology workflows for diagnostic, prognostic, and genomic prediction. Still, lack of interpretability remains a significant barrier to clinical integration. We present an approach for predicting clinically-relevant molecular phenotypes from whole-slide histopathology images using human-interpretable image features (HIFs). Our method leverages >1.6 million annotations from board-certified pathologists across >5700 samples to train deep learning models for cell and tissue classification that can exhaustively map whole-slide images at two and four micron-resolution. Cell- and tissue-type model outputs are combined into 607 HIFs that quantify specific and biologically-relevant characteristics across five cancer types. We demonstrate that these HIFs correlate with well-known markers of the tumor microenvironment and can predict diverse molecular signatures (AUROC 0.601-0.864), including expression of four immune checkpoint proteins and homologous recombination deficiency, with performance comparable to 'black-box' methods. Our HIF-based approach provides a comprehensive, quantitative, and interpretable window into the composition and spatial architecture of the tumor microenvironment.


Assuntos
Neoplasias/classificação , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Patologia Molecular/métodos , Fenótipo , Algoritmos , Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador , Medicina de Precisão , Microambiente Tumoral
6.
Hepatology ; 74(1): 133-147, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33570776

RESUMO

BACKGROUND AND AIMS: Manual histological assessment is currently the accepted standard for diagnosing and monitoring disease progression in NASH, but is limited by variability in interpretation and insensitivity to change. Thus, there is a critical need for improved tools to assess liver pathology in order to risk stratify NASH patients and monitor treatment response. APPROACH AND RESULTS: Here, we describe a machine learning (ML)-based approach to liver histology assessment, which accurately characterizes disease severity and heterogeneity, and sensitively quantifies treatment response in NASH. We use samples from three randomized controlled trials to build and then validate deep convolutional neural networks to measure key histological features in NASH, including steatosis, inflammation, hepatocellular ballooning, and fibrosis. The ML-based predictions showed strong correlations with expert pathologists and were prognostic of progression to cirrhosis and liver-related clinical events. We developed a heterogeneity-sensitive metric of fibrosis response, the Deep Learning Treatment Assessment Liver Fibrosis score, which measured antifibrotic treatment effects that went undetected by manual pathological staging and was concordant with histological disease progression. CONCLUSIONS: Our ML method has shown reproducibility and sensitivity and was prognostic for disease progression, demonstrating the power of ML to advance our understanding of disease heterogeneity in NASH, risk stratify affected patients, and facilitate the development of therapies.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Cirrose Hepática/diagnóstico , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Biópsia , Humanos , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
7.
Hepatology ; 73(2): 625-643, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169409

RESUMO

BACKGROUND AND AIMS: Advanced fibrosis attributable to NASH is a leading cause of end-stage liver disease. APPROACH AND RESULTS: In this phase 2b trial, 392 patients with bridging fibrosis or compensated cirrhosis (F3-F4) were randomized to receive placebo, selonsertib 18 mg, cilofexor 30 mg, or firsocostat 20 mg, alone or in two-drug combinations, once-daily for 48 weeks. The primary endpoint was a ≥1-stage improvement in fibrosis without worsening of NASH between baseline and 48 weeks based on central pathologist review. Exploratory endpoints included changes in NAFLD Activity Score (NAS), liver histology assessed using a machine learning (ML) approach, liver biochemistry, and noninvasive markers. The majority had cirrhosis (56%) and NAS ≥5 (83%). The primary endpoint was achieved in 11% of placebo-treated patients versus cilofexor/firsocostat (21%; P = 0.17), cilofexor/selonsertib (19%; P = 0.26), firsocostat/selonsertib (15%; P = 0.62), firsocostat (12%; P = 0.94), and cilofexor (12%; P = 0.96). Changes in hepatic collagen by morphometry were not significant, but cilofexor/firsocostat led to a significant decrease in ML NASH CRN fibrosis score (P = 0.040) and a shift in biopsy area from F3-F4 to ≤F2 fibrosis patterns. Compared to placebo, significantly higher proportions of cilofexor/firsocostat patients had a ≥2-point NAS reduction; reductions in steatosis, lobular inflammation, and ballooning; and significant improvements in alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, bile acids, cytokeratin-18, insulin, estimated glomerular filtration rate, ELF score, and liver stiffness by transient elastography (all P ≤ 0.05). Pruritus occurred in 20%-29% of cilofexor versus 15% of placebo-treated patients. CONCLUSIONS: In patients with bridging fibrosis and cirrhosis, 48 weeks of cilofexor/firsocostat was well tolerated, led to improvements in NASH activity, and may have an antifibrotic effect. This combination offers potential for fibrosis regression with longer-term therapy in patients with advanced fibrosis attributable to NASH.


Assuntos
Azetidinas/administração & dosagem , Doença Hepática Terminal/prevenção & controle , Isobutiratos/administração & dosagem , Ácidos Isonicotínicos/administração & dosagem , Cirrose Hepática/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxazóis/administração & dosagem , Pirimidinas/administração & dosagem , Idoso , Azetidinas/efeitos adversos , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Biomarcadores/sangue , Biópsia , Esquema de Medicação , Quimioterapia Combinada/efeitos adversos , Quimioterapia Combinada/métodos , Doença Hepática Terminal/patologia , Feminino , Humanos , Imidazóis/administração & dosagem , Imidazóis/efeitos adversos , Isobutiratos/efeitos adversos , Ácidos Isonicotínicos/efeitos adversos , Fígado/efeitos dos fármacos , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Testes de Função Hepática , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Oxazóis/efeitos adversos , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Pirimidinas/efeitos adversos , Índice de Gravidade de Doença , Resultado do Tratamento
8.
Mol Cell Proteomics ; 14(2): 430-40, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25473088

RESUMO

The function of a large percentage of proteins is modulated by post-translational modifications (PTMs). Currently, mass spectrometry (MS) is the only proteome-wide technology that can identify PTMs. Unfortunately, the inability to detect a PTM by MS is not proof that the modification is not present. The detectability of peptides varies significantly making MS potentially blind to a large fraction of peptides. Learning from published algorithms that generally focus on predicting the most detectable peptides we developed a tool that incorporates protein abundance into the peptide prediction algorithm with the aim to determine the detectability of every peptide within a protein. We tested our tool, "Peptide Prediction with Abundance" (PPA), on in-house acquired as well as published data sets from other groups acquired on different instrument platforms. Incorporation of protein abundance into the prediction allows us to assess not only the detectability of all peptides but also whether a peptide of interest is likely to become detectable upon enrichment. We validated the ability of our tool to predict changes in protein detectability with a dilution series of 31 purified proteins at several different concentrations. PPA predicted the concentration dependent peptide detectability in 78% of the cases correctly, demonstrating its utility for predicting the protein enrichment needed to observe a peptide of interest in targeted experiments. This is especially important in the analysis of PTMs. PPA is available as a web-based or executable package that can work with generally applicable defaults or retrained from a pilot MS data set.


Assuntos
Algoritmos , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Sequência de Aminoácidos , Bases de Dados de Proteínas , Humanos , Dados de Sequência Molecular , Biblioteca de Peptídeos , Peptídeos/química , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/metabolismo
9.
Nature ; 487(7407): 370-4, 2012 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-22722833

RESUMO

Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic' sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions. Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential, as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify ~1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.


Assuntos
Evolução Molecular , Genes Fúngicos/genética , Saccharomyces/genética , Sequência de Bases , Sequência Conservada , Variação Genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Biossíntese de Proteínas , Saccharomyces/classificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA