Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565858

RESUMO

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Assuntos
Compostagem , Gases de Efeito Estufa , Solo , Agricultura/métodos , Triticum , Carbono , Carvão Vegetal , Cloreto de Sódio , Cloreto de Sódio na Dieta , Óxido Nitroso/análise , Dióxido de Carbono/análise
3.
J Sci Food Agric ; 97(6): 1868-1875, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27507604

RESUMO

BACKGROUND: Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L-1 ). Salicylic acid at 0.5 mmol L-1 was sprayed on to potato plants after 1 week of salinity application. RESULTS: Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. CONCLUSION: Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L-1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Gases/metabolismo , Ácido Salicílico/farmacologia , Cloreto de Sódio/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/metabolismo , Água/metabolismo , Catalase/metabolismo , Osmorregulação , Peroxidases/metabolismo , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Tolerância ao Sal , Solanum tuberosum/crescimento & desenvolvimento , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA