Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Protoc ; 3(8): e854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37555795

RESUMO

Plant organelles are associated with each other through tethering proteins at membrane contact sites (MCS). Methods such as total internal reflection fluorescence (TIRF) optical tweezers allow us to probe organelle interactions in live plant cells. Optical tweezers (focused infrared laser beams) can trap organelles that have a different refractive index to their surrounding medium (cytosol), whilst TIRF allows us to simultaneously image behaviors of organelles in the thin region of cortical cytoplasm. However, few MCS tethering proteins have so far been identified and tested in a quantitative manner. Automated routines (such as setting trapping laser power and controlling the stage speed and distance) mean we can quantify organelle interactions in a repeatable and reproducible manner. Here we outline a series of protocols which describe laser calibrations required to collect robust data sets, generation of fluorescent plant material (Nicotiana tabacum, tobacco), how to set up an automated organelle trapping routine, and how to quantify organelle interactions (particularly organelle interactions with the endoplasmic reticulum). TIRF-optical tweezers enable quantitative testing of putative tethering proteins to reveal their role in plant organelle associations at MCS. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Microscope system set-up and stability Basic Protocol 2: Generation of transiently expressed fluorescent tobacco tissue by Agrobacterium-mediated infiltration Basic Protocol 3: Setting up an automated organelle trapping routine Basic Protocol 4: Quantifying organelle interactions.


Assuntos
Microscopia , Pinças Ópticas , Retículo Endoplasmático/metabolismo , Lasers , Plantas , Nicotiana
2.
Plant J ; 107(6): 1771-1787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34250673

RESUMO

Upon immune activation, chloroplasts switch off photosynthesis, produce antimicrobial compounds and associate with the nucleus through tubular extensions called stromules. Although it is well established that chloroplasts alter their position in response to light, little is known about the dynamics of chloroplast movement in response to pathogen attack. Here, we report that during infection with the Irish potato famine pathogen Phytophthora infestans, chloroplasts accumulate at the pathogen interface, associating with the specialized membrane that engulfs the pathogen haustorium. The chemical inhibition of actin polymerization reduces the accumulation of chloroplasts at pathogen haustoria, suggesting that this process is partially dependent on the actin cytoskeleton. However, chloroplast accumulation at haustoria does not necessarily rely on movement of the nucleus to this interface and is not affected by light conditions. Stromules are typically induced during infection, embracing haustoria and facilitating chloroplast interactions, to form dynamic organelle clusters. We found that infection-triggered stromule formation relies on BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1)-mediated surface immune signaling, whereas chloroplast repositioning towards haustoria does not. Consistent with the defense-related induction of stromules, effector-mediated suppression of BAK1-mediated immune signaling reduced stromule formation during infection. On the other hand, immune recognition of the same effector stimulated stromules, presumably via a different pathway. These findings implicate chloroplasts in a polarized response upon pathogen attack and point to more complex functions of these organelles in plant-pathogen interactions.


Assuntos
Cloroplastos/microbiologia , Interações Hospedeiro-Patógeno/fisiologia , Nicotiana/microbiologia , Phytophthora infestans/patogenicidade , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/imunologia , Dinitrobenzenos/farmacologia , Luz , Microscopia Confocal , Pinças Ópticas , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Sulfanilamidas/farmacologia , Tiazolidinas/farmacologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/imunologia
3.
Phys Chem Chem Phys ; 22(48): 28032-28044, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33367378

RESUMO

Organic films that form on atmospheric particulate matter change the optical and cloud condensation nucleation properties of the particulate matter and consequently have implications for modern climate and climate models. The organic films are subject to attack from gas-phase oxidants present in ambient air. Here we revisit in greater detail the oxidation of a monolayer of oleic acid by gas-phase ozone at the air-water interface as this provides a model system for the oxidation reactions that occur at the air-water interface of aqueous atmospheric aerosol. Experiments were performed on monolayers of oleic acid at the air-liquid interface at atmospherically relevant ozone concentrations to investigate if the viscosity of the sub-phase influences the rate of the reaction and to determine the effect of the presence of a second component within the monolayer, stearic acid, which is generally considered to be non-reactive towards ozone, on the reaction kinetics as determined by neutron reflectometry measurements. Atmospheric aerosol can be extremely viscous. The kinetics of the reaction were found to be independent of the viscosity of the sub-phase below the monolayer over a range of moderate viscosities, , demonstrating no involvement of aqueous sub-phase oxidants in the rate determining step. The kinetics of oxidation of monolayers of pure oleic acid were found to depend on the surface coverage with different behaviour observed above and below a surface coverage of oleic acid of ∼1 × 1018 molecule m-2. Atmospheric aerosol are typically complex mixtures, and the presence of an additional compound in the monolayer that is inert to direct ozone oxidation, stearic acid, did not significantly change the reaction kinetics. It is demonstrated that oleic acid monolayers at the air-water interface do not leave any detectable material at the air-water interface, contradicting the previous work published in this journal which the authors now believe to be erroneous. The combined results presented here indicate that the kinetics, and thus the atmospheric chemical lifetime for unsaturated surface active materials at the air-water interface to loss by reaction with gas-phase ozone, can be considered to be independent of other materials present at either the air-water interface or in the aqueous sub-phase.

4.
Front Chem ; 8: 576175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195066

RESUMO

In this study the application of porous carbon microparticles for the transport of a sparingly soluble material into cells is demonstrated. Carbon offers an intrinsically sustainable platform material that can meet the multiple and complex requirements imposed by applications in biology and medicine. Porous carbon microparticles are attractive as they are easy to handle and manipulate and combine the chemical versatility and biocompatibility of carbon with a high surface area due to their highly porous structure. The uptake of fluorescently labeled microparticles by cancer (HeLa) and normal human embryonic Kidney (HEK 293) cells was monitored by confocal fluorescence microscopy. In this way the influence of particle size, surface functionalization and the presence of transfection agent on cellular uptake were studied. In the presence of transfection agent both large (690 nm) and small microparticles (250 nm) were readily internalized by both cell lines. However, in absence of the transfection agent the uptake was influenced by particle size and surface PEGylation with the smaller nanoparticle size being delivered. The ability of microparticles to deliver a fluorescein dye model cargo was also demonstrated in normal (HEK 293) cell line. Taken together, these results indicate the potential use of these materials as candidates for biological applications.

5.
Commun Biol ; 3(1): 161, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246085

RESUMO

Mitochondria are highly pleomorphic, undergoing rounds of fission and fusion. Mitochondria are essential for energy conversion, with fusion favouring higher energy demand. Unlike fission, the molecular components involved in mitochondrial fusion in plants are unknown. Here, we show a role for the GTPase Miro2 in mitochondria interaction with the ER and its impacts on mitochondria fusion and motility. Mutations in AtMiro2's GTPase domain indicate that the active variant results in larger, fewer mitochondria which are attached more readily to the ER when compared with the inactive variant. These results are contrary to those in metazoans where Miro predominantly controls mitochondrial motility, with additional GTPases affecting fusion. Synthetically controlling mitochondrial fusion rates could fundamentally change plant physiology by altering the energy status of the cell. Furthermore, altering tethering to the ER could have profound effects on subcellular communication through altering the exchange required for pathogen defence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/enzimologia , Proteínas dos Microfilamentos/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Nicotiana/enzimologia , Epiderme Vegetal/enzimologia , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas/enzimologia , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Proteínas dos Microfilamentos/genética , Mitocôndrias/genética , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas/genética , Transdução de Sinais , Nicotiana/genética
6.
J Am Chem Soc ; 140(32): 10242-10249, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30032598

RESUMO

The development of long-lived luminescent nanoparticles for lifetime imaging is of wide interest as luminescence lifetime is environmentally sensitive detection independent of probe concentration. We report novel iridium-coated gold nanoparticles as probes for multiphoton lifetime imaging with characteristic long luminescent lifetimes based on iridium luminescence in the range of hundreds of nanoseconds and a short signal on the scale of picoseconds based on gold allowing multichannel detection. The tailor-made IrC6 complex forms stable, water-soluble gold nanoparticles (AuNPs) of 13, 25, and 100 nm, bearing 1400, 3200, and 22 000 IrC6 complexes per AuNP, respectively. The sensitivity of the iridium signal on the environment of the cell is evidenced with an observed variation of lifetimes. Clusters of iridium nanoparticles show lifetimes from 450 to 590 ns while lifetimes of 660 and 740 ns are an average of different points in the cytoplasm and nucleus. Independent luminescence lifetime studies of the nanoparticles in different media and under aggregation conditions postulate that the unusual long lifetimes observed can be attributed to interaction with proteins rather than nanoparticle aggregation. Total internal reflection fluorescence microscopy (TIRF), confocal microscopy studies and 3D luminescence lifetime stacks confirm the presence of bright, nonaggregated nanoparticles inside the cell. Inductively coupled plasma mass spectrometry (ICPMS) analysis further supports the presence of the nanoparticles in cells. The iridium-coated nanoparticles provide new nanoprobes for lifetime detection with dual channel monitoring. The combination of the sensitivity of the iridium signal to the cell environment together with the nanoscaffold to guide delivery offer opportunities for iridium nanoparticles for targeting and tracking in in vivo models.


Assuntos
Irídio/química , Nanopartículas Metálicas/química , Complexos de Coordenação , Ouro/química , Células HeLa , Humanos , Luminescência , Imagem Óptica , Tensoativos
7.
Inorg Chem ; 55(11): 5623-33, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27219675

RESUMO

Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM).


Assuntos
Irídio/química , Lantânio/química , Sondas Moleculares , Oxigênio/análise , Linhagem Celular Tumoral , Humanos , Luminescência , Espectrofotometria Ultravioleta
8.
Langmuir ; 32(15): 3580-6, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26982629

RESUMO

Measurements of the ultralow interfacial tension and surfactant film bending rigidity for micron-sized heptane droplets in bis(2-ethylhexyl) sodium sulfosuccinate-NaCl aqueous solutions were performed in a microfluidic device through the analysis of thermally driven droplet interface fluctuations. The Fourier spectrum of the stochastic droplet interface displacement was measured through bright-field video microscopy and a contour analysis technique. The droplet interfacial tension, together with the surfactant film bending rigidity, was obtained by fitting the experimental results to the prediction of a capillary wave model. Compared to existing methods for ultralow interfacial tension measurements, this contactless, nondestructive, all-optical approach has several advantages, such as fast measurement, easy implementation, cost-effectiveness, reduced amount of liquids, and integration into lab-on-a-chip devices.

9.
Phys Chem Chem Phys ; 17(4): 2734-41, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25502125

RESUMO

The oxidation of nitrite anion within an aqueous atmospheric droplet may be a sink for HONO in the lower atmosphere. An optical trap with Raman spectroscopy is used to demonstrate that the oxidation of aqueous nitrite anion in levitated, micron sized, aqueous droplets by gas-phase ozone is consistent with bulk aqueous-phase kinetics and diffusion. There is no evidence of an enhanced or retarded reaction at the droplet surface at the concentrations used in the experiment or likely to be found in the atmosphere. The oxidation of nitrite in an aqueous droplet by gas-phase ozone does not cause the droplet to hydrodynamically change in size and demonstrates use of an optical trap as a wall-less reactor to measuring aqueous-phase rate coefficients.

10.
Langmuir ; 29(14): 4594-602, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23480170

RESUMO

The presence of unsaturated lipids in lung surfactant is important for proper respiratory function. In this work, we have used neutron reflection and surface pressure measurements to study the reaction of the ubiquitous pollutant gas-phase ozone, O3, with pure and mixed phospholipid monolayers at the air-water interface. The results reveal that the reaction of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, with ozone leads to the rapid loss of the terminal C9 portion of the oleoyl strand of POPC from the air-water interface. The loss of the C9 portion from the interface is accompanied by an increase in the surface pressure (decrease in surface tension) of the film at the air-water interface. The results suggest that the portion of the oxidized oleoyl strand that is still attached to the lipid headgroup rapidly reverses its orientation and penetrates the air-water interface alongside the original headgroup, thus increasing the surface pressure. The reaction of POPC with ozone also leads to a loss of material from the palmitoyl strand, but the loss of palmitoyl material occurs after the loss of the terminal C9 portion from the oleoyl strand of the molecule, suggesting that the palmitoyl material is lost in a secondary reaction step. Further experiments studying the reaction of mixed monolayers composed of unsaturated lipid POPC and saturated lipid dipalmitoyl-sn-glycero-3-phosphocholine, DPPC, revealed that no loss of DPPC from the air-water interface occurs, eliminating the possibility that a reactive species such as an OH radical is formed and is able to attack nearby lipid chains. The reaction of ozone with the mixed films does cause a significant change in the surface pressure of the air-water interface. Thus, the reaction of unsaturated lipids in lung surfactant changes and impairs the physical properties of the film at the air-water interface.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Poluentes Atmosféricos/química , Ar , Ozônio/química , Fosfatidilcolinas/química , Proteínas Associadas a Surfactantes Pulmonares/química , Água/química , Poluentes Atmosféricos/farmacologia , Difração de Nêutrons , Oxirredução , Ozônio/farmacologia , Pressão
11.
Rev Sci Instrum ; 82(9): 093705, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974592

RESUMO

Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.


Assuntos
Lasers , Microscopia/instrumentação , Fenômenos Ópticos , Animais , Linhagem Celular , Sobrevivência Celular , Cor , Receptores ErbB/química , Receptores ErbB/metabolismo , Humanos , Cinética , Fótons , Conformação Proteica , Transporte Proteico , Transdução de Sinais
12.
J Biophotonics ; 2(1-2): 47-69, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19343685

RESUMO

In this paper we report on preliminary investigations into using Raman tweezers to classify urological cell lines. This builds on earlier work within the group, whereby Raman tweezer methodologies were developed, and the application of this technique to differentiate between live prostate cancer (CaP) and bladder cells lines (PC-3 and MGH-U1 respectively) was demonstrated.In this present study we analysed chemically fixed cells using two different fixative methods; SurePath (a commercial available liquid based cytology media) and 4% v/v formalin/PBS fixatives. The study has been expanded from our previous live cell study to include the androgen sensitive CaP cell line LNCaP, primary benign prostate hyperplasia (BPH) cells as well as primary urethral cells. Raman light from the cells was collected using a 514.5 nm Ar-ion laser excitation source in back-scattering configuration mode.Principal component-linear discriminate analysis (PC-LDA) models of resulting cell spectra were generated and these were validated using a blind comparison. Sensitivities and specificities of > 72% and 90% respectively, for SurePath fixed cells, and > 93% and 98% respectively for 4% v/v formalin/PBS fixed cells was achieved. The higher prediction results for the formalin fixed cells can be attributed to a better signal-to-noise ratio for spectra obtained from these cells.Following on from this work, urological cell lines were exposed to urine for up to 12 hours to determine the effect of urine on the ability to classify these cells. Results indicate that urine has no detrimental effect on prediction results.


Assuntos
Pinças Ópticas , Análise Espectral Raman/instrumentação , Sistema Urinário/citologia , Linhagem Celular , Linhagem Celular Tumoral , Tamanho Celular , Análise Discriminante , Humanos , Masculino , Análise de Componente Principal , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Sensibilidade e Especificidade , Fixação de Tecidos , Bexiga Urinária/citologia , Neoplasias da Bexiga Urinária/patologia , Urina/citologia
13.
J Biomed Opt ; 13(6): 064004, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19123651

RESUMO

An investigation into the use of Raman optical tweezers to study urological cell lines is reported, with the ultimate aim of determining the presence of malignant CaP cells in urine and peripheral fluids. To this end, we trapped and analyzed live CaP cells (PC-3) and bladder cells (MGH-U1), because both prostate and bladder cells are likely to be present in urine. The laser excitation wavelength of 514.5 nm was used, with Raman light collected both in back- and forward-scattering geometric configurations. For the backscattering configuration the same laser was used for trapping and excitation, while for forward scattering a 1064 nm laser provided the trapping beam. Analysis of cell-diameter distributions for cells analyzed suggested normal distribution of cell sizes, indicating an unbiased cell-selection criterion. Principal components analysis afforded discrimination of MGH-U1 and PC-3 spectra collected in either configuration, demonstrating that it is possible to trap, analyze, and differentiate PC-3 from MGH-U1 cells using a 514.5 nm laser. By loading plot analysis, possible biomolecules responsible for discrimination in both configurations were determined. Finally, the effect of cell size on discrimination was investigated, with results indicating that separation is based predominantly on cell type rather than cell size.


Assuntos
Pinças Ópticas , Neoplasias da Próstata/diagnóstico , Análise Espectral Raman/instrumentação , Neoplasias da Bexiga Urinária/diagnóstico , Linhagem Celular Tumoral , Desenho Assistido por Computador , Diagnóstico Diferencial , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise Espectral Raman/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA