Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Radiat Res ; 201(5): 460-470, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376474

RESUMO

With the current volatile geopolitical climate, the threat of nuclear assault is high. Exposure to ionizing radiation from either nuclear incidents or radiological accidents often lead to major harmful consequences to human health. Depending on the absorbed dose, the symptoms of the acute radiation syndrome and delayed effects of acute radiation exposure (DEARE) can appear within hours, weeks to months. The lung is a relatively radiosensitive organ with manifestation of radiation pneumonitis as an acute effect, followed by apparent fibrosis in weeks or even months. A recently developed, first-of-its-kind murine model for partial-body irradiation (PBI) injury, which can be used to test potential countermeasures against multi-organ damage such as gastrointestinal (GI) tract and lungs was used for irradiation, with 2.5% bone marrow spared (BM2.5-PBI) from radiation exposure. Long-term damage to lungs from radiation was evaluated using µ-CT scans, pulmonary function testing, histopathological parameters and molecular biomarkers. Pulmonary fibrosis was detected by ground glass opacity observed in µ-CT scans of male and female C57BL/6J mice 6-7 months after BM2.5-PBI. Lung mechanics assessments pertaining to peripheral airways suggested fibrotic lungs with stiffer parenchymal lung tissue and reduced inspiratory capacity in irradiated animals 6-7 months after BM2.5-PBI. Histopathological evaluation of the irradiated lungs revealed presence of focal and diffuse pleural, and parenchymal inflammatory and fibrotic lesions. Fibrosis was confirmed by elevated levels of collagen when compared to lungs of age-matched naïve mice. These findings were validated by findings of elevated levels of pro-fibrotic biomarkers and reduction in anti-inflammatory proteins. In conclusion, a long-term model for radiation-induced pulmonary fibrosis was established, and countermeasures could be screened in this model for survival and protection/mitigation or recovery from radiation-induced pulmonary damage.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fibrose Pulmonar , Animais , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/patologia , Camundongos , Masculino , Feminino , Pulmão/efeitos da radiação , Pulmão/patologia , Pneumonite por Radiação/patologia , Pneumonite por Radiação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/etiologia
2.
Thyroid ; 34(4): 496-509, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38149583

RESUMO

Background: Thyroid cancer cell lines have been of great value for the study of thyroid cancer. However, the availability of benign thyroid adenoma cell lines is limited. Methods: Cell lines were established from thyroid adenomatous nodules that developed in mice treated with the goitrogen amitrole. Expression of epithelial, mesenchymal, and thyroid markers of these established cell lines was determined, and the effect of lentivirus-transduced overexpression of NKX2-1, a master regulator of thyroid development, on the thyroid marker expression was examined. Signal transduction and cell proliferation were evaluated after treatment with insulin-like growth factor-I (IGF-I) and the selective IGF-I receptor (IGF-IR) inhibitor NVP-ADW742. Xenograft studies were performed to examine tumorigenicity of the cells in mice. Whole-genome sequencing (WGS) was used to comprehensively determine the genetic mutations in the established two cell lines. Results: Five mouse thyroid adenomatous nodules-derived cell lines named CAT (cells from amitrole-treated thyroids) were established. Among these, two cell lines, CAT458/458s (CAT458s: a subline of CAT458) and CAT459, were found to be positive for epithelial markers and negative for a mesenchymal marker. NKX2-1-positive CAT459 cells showed higher messenger RNA (mRNA) expression of some thyroid differentiation markers than NKX2-1-negative CAT458s cells, and NKX2-1 overexpression increased and/or induced their expression. IGF-I signaling was transduced in thyrotropin receptor (Tshr)-negative CAT458s and 459 cells, and NVP-ADW742 suppressed their proliferation. No tumors developed in mice after subcutaneous injection of CAT458s or 459 cells. The WGS analysis revealed the presence of missense mutations in the tumor suppressor genes such as Polk (encoding DNA polymerase kappa) and Tgfb1 (encoding transforming growth factor beta 1), while no mutations were found in the prominent thyroid cancer-related genes Braf, Trp53 (encoding p53), and Tert (encoding telomerase reverse transcriptase). Conclusions: Two mouse thyroid adenomatous nodule-derived cell lines with different thyroid differentiation marker expression were established. NKX2-1 induced partial differentiation of these cell lines. They lacked tumorigenicity and prominent gene mutations involved in thyroid cancer development, while missense mutations were found in some tumor suppressors as revealed by WGS. The CAT458s and 459 provide a new tool to further clarify the process of thyroid multistep carcinogenesis and differentiation.


Assuntos
Fator de Crescimento Insulin-Like I , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/farmacologia , Amitrol (Herbicida) , Neoplasias da Glândula Tireoide/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA
3.
Vet Pathol ; 59(6): 1047-1055, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36062914

RESUMO

Brain and spinal cord histopathology findings in male and female 20-month-old mice in a large-scale aging study of 28 inbred Jackson Laboratory mouse strains from 7 genetic families are described. Brain sections from selected strains at 12 and 24 months of age or older were also reviewed. Common lesions include axonal dystrophy in the gracile and/or cuneate nucleus in the sensory tract of the dorsal medulla and in the spinal cord in all strains. Hirano-like bodies were seen in 24/28 strains, and mineralization was observed in the thalamus of 9/28 strains. Less common lesions were also seen in the cerebellum, cerebral cortex, and other brain areas. No brain or spinal cord tumors were found. Evidence of an impairment of the ubiquitin-proteasome system (UPS) and/or suspected autophagy was manifested as medullary axonal dystrophy with intra-axonal granular eosinophilic bodies and LC3B immunohistochemistry in most strains. RIIIS/J, the most severely affected strain, showed moderate axonal dystrophy at 12 months, which progressed to severe lesions at 20 months. Comparative pathology in various species is discussed.


Assuntos
Complexo de Endopeptidases do Proteassoma , Medula Espinal , Envelhecimento , Animais , Feminino , Masculino , Bulbo/patologia , Camundongos , Camundongos Endogâmicos , Medula Espinal/patologia , Ubiquitinas
5.
Biol Open ; 11(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730316

RESUMO

Epithelial cell adhesion molecule (EPCAM) is a transmembrane glycoprotein expressed on the surface of most epithelial and epithelium-derived tumor cells and reported to regulate stability of epithelial tight junction proteins, claudins. Despite its widespread expression, loss of EPCAM function has so far only been reported to prominently affect intestinal development, resulting in severe early onset enteropathy associated with impaired growth and decreased survival in both humans and mice. In this study, we show that the critical role of EPCAM is not limited to intestinal tissues and that it shares its essential function with its only known homolog, Trophoblast cell surface antigen 2 (TROP2). EPCAM-deficient mice show significant growth retardation and die within 4 weeks after birth. In addition to changes in small and large intestines, loss of EPCAM results in hyperkeratosis in the skin and forestomach, hair follicle atrophy leading to alopecia, nephron hypoplasia in the kidney, proteinuria, and altered production of digestive enzymes by the pancreas. Expression of TROP2 partially, but not completely, overlaps with EPCAM in a number developing epithelia. Although loss of TROP2 had no gross impact on mouse development and survival, TROP2 deficiency generally compounded developmental defects observed in EPCAM-deficient mice, led to an approximately 60% decrease in embryonic viability, and further shortened postnatal lifespan of born pups. Importantly, TROP2 was able to compensate for the loss of EPCAM in stabilizing claudin-7 expression and cell membrane localization in tissues that co-express both proteins. These findings identify overlapping functions of EPCAM and TROP2 as regulators of epithelial development in both intestinal and extraintestinal tissues.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Claudinas , Intestinos , Animais , Claudinas/genética , Claudinas/metabolismo , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Epitélio/metabolismo , Camundongos
6.
Environ Int ; 161: 107106, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35091376

RESUMO

BACKGROUND: The carcinogenicity of radiofrequency electromagnetic fields (RF EMF) has been evaluated by the International Agency for Research on Cancer (IARC) in 2011. Based on limited evidence of carcinogenicity in humans and in animals, RF EMF were classified as possibly carcinogenic to humans (Group 2B). In 2018, based on a survey amongst RF experts, WHO prioritized six major topics of potential RF EMF related human health effects for systematic reviews. In the current manuscript, we present the protocol for the systematic review of experimental laboratory animal studies (cancer bioassays) on exposure to RF fields on the outcome of cancer in laboratory animals. OBJECTIVE: In the framework of WHO's Radiation Program, the aim of this work is to systematically evaluate effects of RF EMF exposure on cancer in laboratory animals. STUDY ELIGIBILITY AND CRITERIA: WHO's Handbook (2014) for guideline development will be followed with appropriate adaptation. The selection of eligible studies will be based on Population, Exposures, Comparators, and Outcomes (PECO) criteria. We will include peer-reviewed articles and publicly available reports from government agencies reporting original data about animal cancer bioassays on exposure to RF EMF. The studies are identified by searching the following databases: MEDLINE (PubMed), Science Citation Index Expanded and Emerging Sources Citation Indes (Web of Science), Scopus, and the EMF Portal. No language or year-of-publication restrictions are applied. The methods and results of eligible studies will be presented in accordance with the PRISMA 2020 guidelines. STUDY APPRAISAL METHOD: Study evaluation of individual studies will be assessed using a risk of bias (RoB) tool developed by the Office of Health Assessment and Translation (OHAT) with appropriate considerations including sensitivity for evaluating RF EMF exposure in animal cancer bioassays. The final evaluation on the certainty of the evidence on a carcinogenic risk of RF EMF exposure in experimental animals will be performed using the OHAT Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach with appropriate considerations. The protocol has been registered in an open-source repository (PROSPERO). FUNDING: The study is partly financially supported by the World Health Organization. No additional funding was provided outside author salaries through their places of employment.


Assuntos
Campos Eletromagnéticos , Neoplasias , Animais , Animais de Laboratório , Campos Eletromagnéticos/efeitos adversos , Neoplasias/etiologia , Ondas de Rádio/efeitos adversos , Revisões Sistemáticas como Assunto
7.
Toxicol Pathol ; 49(8): 1344-1367, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34634962

RESUMO

The 2021 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri," was the 20th anniversary of the symposia and held virtually on June 25th, in advance of the Society of Toxicologic Pathology's 40th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were presented to the audience for voting and discussion. Various lesions and topics covered during the symposium included differentiation of canine oligodendroglioma, astrocytoma, and undefined glioma with presentation of the National Cancer Institute's updated diagnostic terminology for canine glioma; differentiation of polycystic kidney, dilated tubules and cystic tubules with a discussion of human polycystic kidney disease; a review of various rodent nervous system background lesions in control animals from NTP studies with a focus on incidence rates and potential rat strain differences; vehicle/excipient-related renal lesions in cynomolgus monkeys with a discussion on the various cyclodextrins and their bioavailability, toxicity, and tumorigenicity; examples of rodent endometrial tumors including intestinal differentiation in an endometrial adenocarcinoma that has not previously been reported in rats; a review of various rodent adrenal cortex lesions including those that represented diagnostic challenges with multiple processes such as vacuolation, degeneration, necrosis, hyperplasia, and hypertrophy; and finally, a discussion of diagnostic criteria for uterine adenomyosis, atypical hyperplasia, and adenocarcinoma in the rat.


Assuntos
Adenocarcinoma , Neoplasias do Endométrio , Toxicologia , Animais , Cães , Feminino , Hiperplasia , Necrose , Ratos
8.
FASEB J ; 35(11): e21968, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34644426

RESUMO

St. John's wort (SJW), from traditional herbs, activates the pregnane X receptor (PXR), a potential drug target for treating inflammatory bowel disease (IBD). However, how SJW alleviates dextran sodium sulfate (DSS)-induced experimental IBD by activating PXR is unknown. To test this, PXR-humanized, wild-type (WT) and Pxr-null mice, primary intestinal organoids cultures, and the luciferase reporter gene assays were employed. In vivo, a diet supplemented with SJW was found to activate intestinal PXR both in WT and PXR-humanized mice, but not in Pxr-null mice. SJW prevented DSS-induced IBD in PXR-humanized and WT mice, but not in Pxr-null mice. In vitro, hyperforin, a major component of SJW, activated PXR and suppressed tumor necrosis factor (TNF)α-induced nuclear factor (NF) κB translocation in primary intestinal organoids from PXR-humanized mice, but not Pxr-null mice. Luciferase reporter gene assays showed that hyperforin dose-dependently alleviated TNFα-induced NFκB transactivation by activating human PXR in Caco2 cells. Furthermore, SJW therapeutically attenuated DSS-induced IBD in PXR-humanized mice. These data indicate the therapeutic potential of SJW in alleviating DSS-induced IBD in vivo, and TNFα-induced NFκB activation in vitro, dependent on PXR activation, which may have clinical implications for using SJW as a herbal drug anti-IBD treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Hypericum/química , Doenças Inflamatórias Intestinais/tratamento farmacológico , Extratos Vegetais/farmacologia , Receptor de Pregnano X/fisiologia , Animais , Células CACO-2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo
9.
PLoS Genet ; 17(8): e1009094, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34398873

RESUMO

The systematic identification of genetic events driving cellular transformation and tumor progression in the absence of a highly recurrent oncogenic driver mutation is a challenge in cutaneous oncology. In cutaneous squamous cell carcinoma (cuSCC), the high UV-induced mutational burden poses a hurdle to achieve a complete molecular landscape of this disease. Here, we utilized the Sleeping Beauty transposon mutagenesis system to statistically define drivers of keratinocyte transformation and cuSCC progression in vivo in the absence of UV-IR, and identified both known tumor suppressor genes and novel oncogenic drivers of cuSCC. Functional analysis confirms an oncogenic role for the ZMIZ genes, and tumor suppressive roles for KMT2C, CREBBP and NCOA2, in the initiation or progression of human cuSCC. Taken together, our in vivo screen demonstrates an extremely heterogeneous genetic landscape of cuSCC initiation and progression, which can be harnessed to better understand skin oncogenic etiology and prioritize therapeutic candidates.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Transformação Celular Neoplásica/genética , Queratinócitos/patologia , Mutagênese Insercional/métodos , Análise de Sequência de DNA/métodos , Neoplasias Cutâneas/genética , Proteína de Ligação a CREB/genética , Carcinoma de Células Escamosas/patologia , Transformação Celular Neoplásica/patologia , Elementos de DNA Transponíveis , Proteínas de Ligação a DNA/genética , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Coativador 2 de Receptor Nuclear/genética , Neoplasias Cutâneas/patologia
10.
Radiat Res ; 196(2): 156-174, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34019667

RESUMO

Coagulopathies are well documented after acute radiation exposure at hematopoietic doses, and radiation-induced bleeding is notably one of the two main causes of mortality in the hematopoietic acute radiation syndrome. Despite this, understanding of the mechanisms by which radiation alters hemostasis and induces bleeding is still lacking. Here, male Göttingen minipigs received hematopoietic doses of 60Co gamma irradiation (total body) and coagulopathies were characterized by assessing bleeding, blood cytopenia, fibrin deposition, changes in hemostatic properties, coagulant/anticoagulant enzyme levels, and markers of inflammation, endothelial dysfunction, and barrier integrity to understand if a relationship exists between bleeding, hemostatic defects, bone marrow aplasia, inflammation, endothelial dysfunction and loss of barrier integrity. Acute radiation exposure induced coagulopathies in the Göttingen minipig model of hematopoietic acute radiation syndrome; instances of bleeding were not dependent upon thrombocytopenia. Neutropenia, alterations in hemostatic parameters and damage to the glycocalyx occurred in all animals irrespective of occurrence of bleeding. Radiation-induced bleeding was concurrent with simultaneous thrombocytopenia, anemia, neutropenia, inflammation, increased heart rate, decreased nitric oxide bioavailability and endothelial dysfunction; bleeding was not observed with the sole occurrence of a single aforementioned parameter in the absence of the others. Alteration of barrier function or clotting proteins was not observed in all cases of bleeding. Additionally, fibrin deposition was observed in the heart and lungs of decedent animals but no evidence of DIC was noted, suggesting a unique pathophysiology of radiation-induced coagulopathies. These findings suggest radiation-induced coagulopathies are the result of simultaneous damage to several key organs and biological functions, including the immune system, the inflammatory response, the bone marrow and the cardiovasculature.


Assuntos
Síndrome Aguda da Radiação/patologia , Hematopoese/genética , Hemorragia/patologia , Inflamação/patologia , Anormalidades Induzidas por Radiação , Síndrome Aguda da Radiação/sangue , Síndrome Aguda da Radiação/etiologia , Animais , Transtornos de Proteínas de Coagulação/sangue , Transtornos de Proteínas de Coagulação/etiologia , Transtornos de Proteínas de Coagulação/patologia , Modelos Animais de Doenças , Hematopoese/efeitos da radiação , Hemorragia/sangue , Hemorragia/etiologia , Humanos , Inflamação/sangue , Inflamação/etiologia , Suínos , Porco Miniatura
11.
Cancers (Basel) ; 13(2)2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33435458

RESUMO

A central challenge in cancer genomics is the systematic identification of single and cooperating tumor suppressor gene mutations driving cellular transformation and tumor progression in the absence of oncogenic driver mutation(s). Multiple in vitro and in vivo gene inactivation screens have enhanced our understanding of the tumor suppressor gene landscape in various cancers. However, these studies are limited to single or combination gene effects, specific organs, or require sensitizing mutations. In this study, we developed and utilized a Sleeping Beauty transposon mutagenesis system that functions only as a gene trap to exclusively inactivate tumor suppressor genes. Using whole body transposon mobilization in wild type mice, we observed that cumulative gene inactivation can drive tumorigenesis of solid cancers. We provide a quantitative landscape of the tumor suppressor genes inactivated in these cancers and show that, despite the absence of oncogenic drivers, these genes converge on key biological pathways and processes associated with cancer hallmarks.

12.
Am J Pathol ; 191(2): 335-352, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181139

RESUMO

Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.


Assuntos
Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes pX , Infecções por HTLV-I/complicações , Sarcoma Histiocítico , Animais , Carcinogênese/genética , Sarcoma Histiocítico/patologia , Sarcoma Histiocítico/virologia , Vírus Linfotrópico T Tipo 1 Humano/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oncogenes , Osteólise/patologia , Osteólise/virologia
13.
Lasers Surg Med ; 52(8): 779-787, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919868

RESUMO

BACKGROUND AND OBJECTIVES: Complete thermocoagulation of tumors is vital to minimize the risk of local tumor recurrence after a thermal ablation. Histological assessments are not real-time and require experienced pathologists to grade the thermal damage (histopathology) [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Real-time assessment of thermal tissue damage during an ablation is necessary to achieve optimal tumor ablation. In our previous studies, we found that continuous monitoring of the wavelength-averaged (435-630 nm) tissue absorption coefficient (µa ) and the reduced scattering coefficient ( µs' ) during heating of a porcine liver at 100°C follows a sigmoidal growth curve. Therefore, we concluded that increases in the tissue µa and µs' during thermocoagulation were correlated with true thermal damage. The goal of this study was to determine if increases in the tissue µa and µs' during thermocoagulation are correlated with true thermal damage. STUDY DESIGN/MATERIALS AND METHODS: In this paper, continuously measured values of µa and µs' during heating of the porcine liver tissue were compared with the histology-assessed thermal damage scores at four different temperature points (37°C, 55°C, 65°C, and 75°C). RESULTS: The damage scores for the tissues in Group 3 (65°C) and Group 4 (75°C) were significantly different from each other and from the other groups. The damage scores were not significantly different between Group 1 (37°C) and Group 2 (55°C). CONCLUSION: The results indicate that relative changes in µa and µs' can be used to classify thermal damage (histopathology) scores with an overall accuracy of 72.5% up to 75°C. [Correction added on 21 January, 2020 after first online publication: After thermal damage in the preceding sentence, (histopathology) was added]. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Hipertermia Induzida , Neoplasias , Animais , Fígado , Suínos
14.
Toxicol Pathol ; 47(6): 665-783, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31526133

RESUMO

The INHAND Project (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) is a joint initiative of the Societies of Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP), and North America (STP) to develop an internationally accepted nomenclature for proliferative and nonproliferative changes in rats and mice. The purpose of this publication is to provide a standardized nomenclature for classifying changes observed in the hematolymphoid organs, including the bone marrow, thymus, spleen, lymph nodes, mucosa-associated lymphoid tissues, and other lymphoid tissues (serosa-associated lymphoid clusters and tertiary lymphoid structures) with color photomicrographs illustrating examples of the lesions. Sources of material included histopathology databases from government, academia, and industrial laboratories throughout the world. Content includes spontaneous lesions as well as lesions induced by exposure to test materials. The nomenclature for these organs is divided into 3 terminologies: descriptive, conventional, and enhanced. Three terms are listed for each diagnosis. The rationale for this approach and guidance for its application to toxicologic pathology are described in detail below.


Assuntos
Pesquisa Biomédica/normas , Doenças da Medula Óssea/classificação , Medula Óssea , Doenças Linfáticas/classificação , Tecido Linfoide , Animais , Animais de Laboratório , Medula Óssea/anatomia & histologia , Medula Óssea/patologia , Doenças da Medula Óssea/sangue , Doenças da Medula Óssea/imunologia , Doenças da Medula Óssea/patologia , Doenças Linfáticas/sangue , Doenças Linfáticas/imunologia , Doenças Linfáticas/patologia , Tecido Linfoide/anatomia & histologia , Tecido Linfoide/patologia , Camundongos , Ratos , Terminologia como Assunto
15.
Vet Pathol ; 56(1): 33-38, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30278838

RESUMO

The analysis and description of the appearance of cell death in tissue sections can add valuable information to research studies. The scoring/grading and quantification of cell death can be used either as part of a larger scoring scheme or as the final end point of a study. The degree of precision needed is study dependent and will be determined by the question being addressed and the complexity of the model. The methods one uses to quantify cell death are often guided by the tissue of interest. For example, in the brain, it is sometimes necessary to examine death of specific neuronal populations, whereas in more homogeneous tissue such as a tumor xenograft, quantification can be done on a whole-slide basis. In addition to examination of hematoxylin and eosin (HE)-stained sections, immunohistochemistry can be employed to highlight areas of cell death or to identify specific types of cell death, for example, when differentiating apoptosis from necrosis. Automated quantification can be useful in generating statistically comparable data from HE-stained or immunolabeled samples. The rapidly expanding classification of cell death requires the use of multiple techniques to identify them in vivo. This article will provide examples of how different methods of examining and quantifying cell death are used in a variety of research areas, ranging from semiquantitative evaluation in HE-stained intestine to automated quantification of immunohistochemistry-immunolabeled brain and tumor xenografts. The recently described process of necroptosis will be discussed briefly, with the description and example of the methods used to differentiate this from apoptosis.


Assuntos
Apoptose , Encéfalo/patologia , Intestinos/patologia , Necrose/patologia , Animais , Genótipo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout
16.
ILAR J ; 59(1): 29-39, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476141

RESUMO

The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.


Assuntos
Animais de Laboratório , Animais , Pesquisa Biomédica , Cães , Cobaias , Humanos , Camundongos , Coelhos , Ratos , Terminologia como Assunto
17.
Am J Pathol ; 187(9): 2020-2033, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28727987

RESUMO

A number of mouse strains transgenic for B-cell receptors specific for nucleic acids or other autoantigens have been generated to understand how autoreactive B cells are regulated in normal and autoimmune mice. Previous studies of nonautoimmune C57BL/6 mice heterozygous for both the IgH and IgL knockins of the polyreactive autoantibody, 564, produced high levels of autoantibodies in a largely Toll-like receptor 7-dependent manner. Herein, we describe studies of mice homozygous for the knockins that also expressed high levels of autoantibodies but, unlike the heterozygotes, exhibited a high incidence of mature B-cell lymphomas and enhanced susceptibility to bacterial infections. Microarray analyses and serological studies suggested that lymphomagenesis might be related to chronic B-cell activation promoted by IL-21. Strikingly, mice treated continuously with antibiotic-supplemented water did not develop lymphomas or abscesses and exhibited less autoimmunity. This mouse model may help us understand the reasons for enhanced susceptibility to lymphoma development exhibited by humans with a variety of autoimmune diseases, such as Sjögren syndrome, systemic lupus erythematosus, and highly active rheumatoid arthritis.


Assuntos
Autoanticorpos/genética , Autoimunidade , Microbioma Gastrointestinal , Síndromes de Imunodeficiência/genética , Linfoma de Células B/genética , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Feminino , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos Transgênicos , Receptor 7 Toll-Like/metabolismo
18.
J Hepatol ; 67(4): 809-817, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645738

RESUMO

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is the most common form of liver disease. Activation of hedgehog (Hh) signaling has been implicated in the progression of NAFLD and proposed as a therapeutic target; however, the effects of Hh signaling inhibition have not been studied in humans with germline mutations that affect this pathway. METHODS: Patients with holoprosencephaly (HPE), a disorder associated with germline mutations disrupting Sonic hedgehog (SHH) signaling, were clinically evaluated for NAFLD. A combined mouse model of Hh signaling attenuation (Gli2 heterozygous null: Gli2+/-) and diet-induced NAFLD was used to examine aspects of NAFLD and hepatic gene expression profiles, including molecular markers of hepatic fibrosis and inflammation. RESULTS: Patients with HPE had a higher prevalence of liver steatosis compared to the general population, independent of obesity. Exposure of Gli2+/- mice to fatty liver-inducing diets resulted in increased liver steatosis compared to wild-type mice. Similar to humans, this effect was independent of obesity in the mutant mice and was associated with decreased expression of pro-fibrotic and pro-inflammatory genes, and increased expression of PPARγ, a potent anti-fibrogenic and anti-inflammatory regulator. Interestingly, tumor suppressors p53 and p16INK4 were found to be downregulated in the Gli2+/- mice exposed to a high-fat diet. CONCLUSIONS: Our results indicate that germline mutations disrupting Hh signaling promotes liver steatosis, independent of obesity, with reduced fibrosis. While Hh signaling inhibition has been associated with a better NAFLD prognosis, further studies are required to evaluate the long-term effects of mutations affecting this pathway. Lay summary: Non-alcoholic fatty liver disease (NAFLD) is characterized by excess fat deposition in the liver predominantly due to high calorie intake and a sedentary lifestyle. NAFLD progression is usually accompanied by activation of the Sonic hedgehog (SHH) pathway leading to fibrous buildup (scar tissue) and inflammation of the liver tissue. For the first time patients with holoprosencephaly, a disease caused by SHH signaling mutations, are shown to have increased liver steatosis independent of obesity. This observation was recapitulated in a mouse model of attenuated SHH signaling that also showed increased liver steatosis but with decreased fibrosis and inflammation. While SHH inhibition is associated with a good NAFLD prognosis, this increase in liver fat accumulation in the context of SHH signaling inhibition must be studied prospectively to evaluate its long-term effects, especially in individuals with Western-type dietary habits.


Assuntos
Mutação em Linhagem Germinativa , Proteínas Hedgehog/genética , Holoprosencefalia/complicações , Holoprosencefalia/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Adulto , Animais , Proteínas de Ciclo Celular/genética , Criança , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Progressão da Doença , Metabolismo Energético/genética , Feminino , Predisposição Genética para Doença , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Linhagem , Prevalência , Transdução de Sinais/genética , Proteína Gli2 com Dedos de Zinco/deficiência , Proteína Gli2 com Dedos de Zinco/genética
19.
Proc Natl Acad Sci U S A ; 114(11): E2215-E2224, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28251929

RESUMO

Robust prognostic gene signatures and therapeutic targets are difficult to derive from expression profiling because of the significant heterogeneity within breast cancer (BC) subtypes. Here, we performed forward genetic screening in mice using Sleeping Beauty transposon mutagenesis to identify candidate BC driver genes in an unbiased manner, using a stabilized N-terminal truncated ß-catenin gene as a sensitizer. We identified 134 mouse susceptibility genes from 129 common insertion sites within 34 mammary tumors. Of these, 126 genes were orthologous to protein-coding genes in the human genome (hereafter, human BC susceptibility genes, hBCSGs), 70% of which are previously reported cancer-associated genes, and ∼16% are known BC suppressor genes. Network analysis revealed a gene hub consisting of E1A binding protein P300 (EP300), CD44 molecule (CD44), neurofibromin (NF1) and phosphatase and tensin homolog (PTEN), which are linked to a significant number of mutated hBCSGs. From our survival prediction analysis of the expression of human BC genes in 2,333 BC cases, we isolated a six-gene-pair classifier that stratifies BC patients with high confidence into prognostically distinct low-, moderate-, and high-risk subgroups. Furthermore, we proposed prognostic classifiers identifying three basal and three claudin-low tumor subgroups. Intriguingly, our hBCSGs are mostly unrelated to cell cycle/mitosis genes and are distinct from the prognostic signatures currently used for stratifying BC patients. Our findings illustrate the strength and validity of integrating functional mutagenesis screens in mice with human cancer transcriptomic data to identify highly prognostic BC subtyping biomarkers.


Assuntos
Neoplasias da Mama/genética , Transformação Celular Neoplásica/genética , Elementos de DNA Transponíveis , Estudos de Associação Genética , Predisposição Genética para Doença , Mutagênese Insercional , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Mutação , Prognóstico , Reprodutibilidade dos Testes , Risco , Transdução de Sinais , Análise de Sobrevida , Transcriptoma
20.
Lab Anim (NY) ; 46(4): 146-151, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28328876

RESUMO

Reproducibility of in vivo research using the mouse as a model organism depends on many factors, including experimental design, strain or stock, experimental protocols, and methods of data evaluation. Gross and histopathology are often the endpoints of such research and there is increasing concern about the accuracy and reproducibility of diagnoses in the literature. To reproduce histopathological results, the pathology protocol, including necropsy methods and slide preparation, should be followed by interpretation of the slides by a pathologist familiar with reading mouse slides and familiar with the consensus medical nomenclature used in mouse pathology. Likewise, it is important that pathologists are consulted as reviewers of manuscripts where histopathology is a key part of the investigation. The absence of pathology expertise in planning, executing and reviewing in vivo research using mice leads to questionable pathology-based findings and conclusions from studies, even in high-impact journals. We discuss the various aspects of this problem, give some examples from the literature and suggest solutions.


Assuntos
Camundongos , Patologia Veterinária/métodos , Animais , Competência Clínica , Técnicas Histológicas/métodos , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/veterinária , Patologia Veterinária/normas , Reprodutibilidade dos Testes , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA