Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
J Med Chem ; 67(11): 8988-9027, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38770784

RESUMO

Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.


Assuntos
Receptores ErbB , Éxons , Inibidores de Proteínas Quinases , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Animais , Relação Estrutura-Atividade , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Mutagênese Insercional , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Mutação
2.
ACS Med Chem Lett ; 15(5): 583-589, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38746885

RESUMO

To further facilitate the discovery of cysteine reactive covalent inhibitors, there is a need to develop new reactive groups beyond the traditional acrylamide-type warheads. Herein we describe the design and synthesis of covalent EGFR inhibitors that use vinylpyridine as the reactive group. Structure-based design identified the quinazoline-containing vinylpyridine 6 as a starting point. Further modifications focused on reducing reactivity resulted in substituted vinyl compound 12, which shows high EGFR potency and good kinase selectivity, as well as significantly reduced reactivity compared to the starting compound 6, confirming that vinylpyridines can be applied as an alternative cysteine reactive warhead with tunable reactivity.

3.
Protein J ; 43(3): 393-404, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38507106

RESUMO

Biological macromolecules are found in different shapes and sizes. Among these, enzymes catalyze biochemical reactions and are essential in all organisms, but is there a limit size for them to function properly? Large enzymes such as catalases have hundreds of kDa and are formed by multiple subunits, whereas most enzymes are smaller, with molecular weights of 20-60 kDa. Enzymes smaller than 10 kDa could be called microenzymes and the present literature review brings together evidence of their occurrence in nature. Additionally, bioactive peptides could be a natural source for novel microenzymes hidden in larger peptides and molecular downsizing could be useful to engineer artificial enzymes with low molecular weight improving their stability and heterologous expression. An integrative approach is crucial to discover and determine the amino acid sequences of novel microenzymes, together with their genomic identification and their biochemical biological and evolutionary functions.


Assuntos
Enzimas , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Humanos , Peso Molecular , Animais , Peptídeos/química , Peptídeos/metabolismo
4.
FEBS Lett ; 598(3): 363-376, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253842

RESUMO

Xylanases are of significant interest for biomass conversion technologies. Here, we investigated the allosteric regulation of xylan hydrolysis by the Bacillus subtilis GH11 endoxylanase. Molecular dynamics simulations (MDS) in the presence of xylobiose identified binding to the active site and two potential secondary binding sites (SBS) around surface residues Asn54 and Asn151. Arabinoxylan titration experiments with single cysteine mutants N54C and N151C labeled with the thiol-reactive fluorophore acrylodan or the ESR spin-label MTSSL validated the MDS results. Ligand binding at the SBS around Asn54 confirms previous reports, and analysis of the second SBS around N151C discovered in the present study includes residues Val98/Ala192/Ser155/His156. Understanding the regulation of xylanases contributes to efforts for industrial decarbonization and to establishing a sustainable energy matrix.


Assuntos
Bacillus subtilis , Simulação de Dinâmica Molecular , Bacillus subtilis/genética , Sítios de Ligação , Domínio Catalítico , Xilanos/metabolismo , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Especificidade por Substrato
5.
Blood Adv ; 8(3): 746-757, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38181780

RESUMO

ABSTRACT: Advancements in orally bioavailable iron chelators and MRI methods have improved life expectancy and reproductive potential in thalassemia major (TM) and thalassemia intermedia (TI). Pregnancy is associated with adverse maternal and neonatal outcomes, frequency of which has not been well delineated. This systematic review aims to provide risk estimates of maternal and fetal outcomes in TM and TI and explore pregnancy's impact on iron homeostasis. Fifteen studies (429 participants, 684 pregnancies) were included. Meta-analysis revealed a higher thrombosis risk in TI (3.7%) compared to TM (0.92%), unchanged from prepregnancy. Heart failure risks in the earlier years appeared similar (TM 1.6% vs TI 1.1%), and maternal mortality in TM was 3.7%, but with current management, these risks are rare. Gestational diabetes and pre-eclampsia occurred in 3.9% and 11.3% of TM pregnancies, respectively. Caesarean section rates were 83.9% in TM and 67% in TI. No significant difference in stillbirth, small for gestational age neonates, or preterm birth incidence between TM and TI was observed. In TM pregnancies, red cell requirements significantly increased (from 102 to 139 ml/kg/year, P = 0.001), and 70% of TI pregnancies required blood transfusions. As expected, increased transfusion alongside chelation cessation led to a significant increase in serum ferritin during pregnancy (TM by 1005 ng/mL; TI by 332 ng/mL, P < 0.0001). Deterioration in iron status was further reflected by an increase in liver iron concentration (from 4.6 to 11.9 mg/g dry weight, P < 0.0001), and myocardial T2-star (T2∗) magnetic resonance imaging decreased (from 36.2 ± 2.5 ms to 31.1 ms) during pregnancy. These findings emphasize the elevated maternal risk of iron-related cardiomyopathy during pregnancy and labor, stressing the importance of cardiac monitoring and postpartum chelation therapy resumption.


Assuntos
Nascimento Prematuro , Talassemia beta , Humanos , Recém-Nascido , Gravidez , Feminino , Talassemia beta/complicações , Talassemia beta/terapia , Ferro , Resultado da Gravidez , Cesárea
6.
J Med Chem ; 66(17): 12324-12341, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37647129

RESUMO

A major drawback of cytotoxic chemotherapy is the lack of selectivity toward noncancerous cells. The targeted delivery of cytotoxic drugs to tumor cells is a longstanding goal in cancer research. We proposed that covalent inhibitors could be adapted to deliver cytotoxic agents, conjugated to the ß-position of the Michael acceptor, via an addition-elimination mechanism promoted by covalent binding. Studies on model systems showed that conjugated 5-fluorouracil (5FU) could be released upon thiol addition in relevant time scales. A series of covalent epidermal growth factor receptor (EGFR) inhibitors were synthesized as their 5FU derivatives. Achieving the desired release of 5FU was demonstrated to depend on the electronics and geometry of the compounds. Mass spectrometry and NMR studies demonstrated an anilinoquinazoline acrylate ester conjugate bound to EGFR with the release of 5FU. This work establishes that acrylates can be used to release conjugated molecules upon covalent binding to proteins and could be used to develop targeted therapeutics.


Assuntos
Citotoxinas , Fluoruracila , Fluoruracila/farmacologia , Receptores ErbB , Ésteres , Espectrometria de Massas
7.
Radiology ; 307(1): e221856, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36809220

RESUMO

Accumulation of excess iron in the body, or systemic iron overload, results from a variety of causes. The concentration of iron in the liver is linearly related to the total body iron stores and, for this reason, quantification of liver iron concentration (LIC) is widely regarded as the best surrogate to assess total body iron. Historically assessed using biopsy, there is a clear need for noninvasive quantitative imaging biomarkers of LIC. MRI is highly sensitive to the presence of tissue iron and has been increasingly adopted as a noninvasive alternative to biopsy for detection, severity grading, and treatment monitoring in patients with known or suspected iron overload. Multiple MRI strategies have been developed in the past 2 decades, based on both gradient-echo and spin-echo imaging, including signal intensity ratio and relaxometry strategies. However, there is a general lack of consensus regarding the appropriate use of these methods. The overall goal of this article is to summarize the current state of the art in the clinical use of MRI to quantify liver iron content and to assess the overall level of evidence of these various methods. Based on this summary, expert consensus panel recommendations on best practices for MRI-based quantification of liver iron are provided.


Assuntos
Sobrecarga de Ferro , Fígado , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/patologia , Imageamento por Ressonância Magnética/métodos , Ferro , Biópsia
8.
JCO Glob Oncol ; 8: e2200199, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198134

RESUMO

PURPOSE: Pediatric CNS tumors are increasingly a priority, particularly with the WHO designation of low-grade glioma (LGG) as one of six index childhood cancers. There are currently limited data on outcomes of pediatric patients with LGGs in low- and middle-income countries (LMICs). METHODS: To better understand the outcomes of LGGs in LMICs, this systematic review interrogated nine literature databases. RESULTS: The search identified 14,977 publications. Sixteen studies from 19 countries met the selection criteria and were included for data abstraction and analysis. Eleven studies (69%) were retrospective reviews from single institutions, and one (6%) captured institutional data prospectively. The studies captured a total of 957 patients with a median of 49 patients per study. Seven (44%) of the studies described the treatment modalities used. Of 373 patients for whom there was information, 173 (46%) had a gross total or near total resection, 109 (29%) had a subtotal resection, and 91 (24%) had only a biopsy performed. Seven studies, with a total of 476 patients, described the frequency of use of radiotherapy and/or chemotherapy in the cohorts: 83 of these patients received radiotherapy and 76 received chemotherapy. The 5-year overall survival ranged from 69.2% to 93.5%, although lower survival rates were reported at earlier time points. We identified limitations in the published studies with respect to the cohort sizes and methodologies. CONCLUSION: The included studies reported survival rates frequently exceeding 80%, although the ultimate number of studies was limited, pointing to the paucity of studies describing the outcomes of children with LGGs in LMICs. This study underscores the need for more robust data on outcomes in pediatric LGG.


Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Glioma , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Países em Desenvolvimento , Glioma/patologia , Glioma/cirurgia , Humanos , Estudos Retrospectivos
9.
Proc Natl Acad Sci U S A ; 119(24): e2201103119, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35671422

RESUMO

The quaternary organization of rhodopsin-like G protein-coupled receptors in native tissues is unknown. To address this we generated mice in which the M1 muscarinic acetylcholine receptor was replaced with a C-terminally monomeric enhanced green fluorescent protein (mEGFP)-linked variant. Fluorescence imaging of brain slices demonstrated appropriate regional distribution, and using both anti-M1 and anti-green fluorescent protein antisera the expressed transgene was detected in both cortex and hippocampus only as the full-length polypeptide. M1-mEGFP was expressed at levels equal to the M1 receptor in wild-type mice and was expressed throughout cell bodies and projections in cultured neurons from these animals. Signaling and behavioral studies demonstrated M1-mEGFP was fully active. Application of fluorescence intensity fluctuation spectrometry to regions of interest within M1-mEGFP-expressing neurons quantified local levels of expression and showed the receptor was present as a mixture of monomers, dimers, and higher-order oligomeric complexes. Treatment with both an agonist and an antagonist ligand promoted monomerization of the M1-mEGFP receptor. The quaternary organization of a class A G protein-coupled receptor in situ was directly quantified in neurons in this study, which answers the much-debated question of the extent and potential ligand-induced regulation of basal quaternary organization of such a receptor in native tissue when present at endogenous expression levels.


Assuntos
Córtex Cerebral , Hipocampo , Receptor Muscarínico M1 , Animais , Córtex Cerebral/metabolismo , Proteínas de Fluorescência Verde , Hipocampo/metabolismo , Ligantes , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Imagem Óptica , Receptor Muscarínico M1/química , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo
10.
Can Fam Physician ; 68(6): 422-428, 2022 06.
Artigo em Francês | MEDLINE | ID: mdl-35701211

RESUMO

OBJECTIF: Fournir aux professionnels des soins primaires un aperçu actualisé du trouble de l'accès hyperphagique (TAH), qui comporte des recommandations pertinentes. QUALITÉ DES DONNÉES: Une recension a été effectuée dans PubMed, PsycInfo et Google Scholar, sans restrictions temporelles, à l'aide des expressions clés en anglais binge eating disorder, treatment, review, guidelines, psychotherapy, primary care et pharmacotherapy. Le niveau des données probantes pour toutes les recommandations varie de I à III. MESSAGE PRINCIPAL: Le trouble de l'accès hyperphagique est associé à une grande détresse et à une incapacité considérable chez le patient, ainsi qu'à des comorbidités médicales et psychiatriques; il a été ajouté dans la 5e édition du Manuel diagnostique et statistique des troubles mentaux, en 2013. Les médecins de soins primaires sont bien placés pour le dépistage, le diagnostic et l'amorce du traitement du TAH. Une approche par étapes du traitement commence par un développement personnel guidé, suivi par l'ajout ou le changement de la pharmacothérapie, ou par une psychothérapie individuelle, au besoin. Les psychothérapies dont l'efficacité est le plus corroborée par la recherche sont la thérapie cognitivo-comportementale, la thérapie interpersonnelle et la thérapie comportementale dialectique. CONCLUSION: Cet aperçu présente des conseils sur le dépistage, le diagnostic et les approches thérapeutiques fondés sur les données probantes actuellement disponibles, de même les avis d'un groupe diversifié d'experts, pour aider à orienter les cliniciens lorsque les données probantes sont limitées.


Assuntos
Hiperfagia , Obesidade , Humanos , Atenção Primária à Saúde
11.
Biochem Pharmacol ; 195: 114864, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861243

RESUMO

Dictamnine (Dic), a naturally occurring small-molecule furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz., is reported to display anticancer properties. However, little is known about the direct target proteins and anticancer mechanisms of Dic. In the current study, Dic was found to suppress the growth of lung cancer cells in vitro and in vivo, and to attenuate the activation of PI3K/AKT/mTOR and mitogen-activated protein kinase (MAPK) signaling pathways by inhibiting the phosphorylation and activation of receptor tyrosine kinase c-Met. Moreover, the binding of Dic to c-Met was confirmed by using cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assay. Among all cancer cell lines tested, Dic inhibited the proliferation of c-Met-dependent EBC-1 cells with the greatest potency (IC50 = 2.811 µM). Notably, Dic was shown to synergistically improve the chemo-sensitivity of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant lung cancer cells to gefitinib and osimertinib. These results suggest that Dic is a c-Met inhibitor that can serve as a potential therapeutic agent in the treatment of lung cancer, especially against EGFR TKI-resistant and c-Met-dependent lung cancer.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosfotransferases/metabolismo , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Quinolinas/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Feminino , Células Hep G2 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
J Med Chem ; 64(18): 13704-13718, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34491761

RESUMO

The epidermal growth factor receptor (EGFR) harboring activating mutations is a clinically validated target in non-small-cell lung cancer, and a number of inhibitors of the EGFR tyrosine kinase domain, including osimertinib, have been approved for clinical use. Resistance to these therapies has emerged due to a variety of molecular events including the C797S mutation which renders third-generation C797-targeting covalent EGFR inhibitors considerably less potent against the target due to the loss of the key covalent-bond-forming residue. We describe the medicinal chemistry optimization of a biochemically potent but modestly cell-active, reversible EGFR inhibitor starting point with sub-optimal physicochemical properties. These studies culminated in the identification of compound 12 that showed improved cell potency, oral exposure, and in vivo activity in clinically relevant EGFR-mutant-driven disease models, including an Exon19 deletion/T790M/C797S triple-mutant mouse xenograft model.


Assuntos
Antineoplásicos/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos Nus , Camundongos SCID , Mutação , Compostos Organofosforados/síntese química , Compostos Organofosforados/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Mol Endocrinol ; 67(4): 173-188, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34382943

RESUMO

Epidemiological studies inversely associate BMI with breast cancer risk in premenopausal women, but the pathophysiological linkage remains ill-defined. Despite the documented relevance of the 'local' environment to breast cancer progression and the well-accepted differences in transcriptome and metabolic properties of anatomically distinct fat depots, specific breast adipose contributions to the proliferative potential of non-diseased breast glandular compartment are not fully understood. To address early breast cancer causation in the context of obesity status, we compared the cellular and molecular phenotypes of breast adipose and matched breast glandular tissue from premenopausal non-obese (mean BMI = 27 kg/m2) and obese (mean BMI = 44 kg/m2) women. Breast adipose from obese women showed higher expression levels of adipogenic, pro-inflammatory, and estrogen synthetic genes than from non-obese women. Obese breast glandular tissue displayed lower proliferation and inflammatory status and higher expression of anti-proliferative/pro-senescence biomarkers TP53 and p21 than from non-obese women. Transcript levels for T-cell receptor and co-receptors CD3 and CD4 were higher in breast adipose of obese cohorts, coincident with elevated adipose interleukin 10 (IL10) and FOXP3 gene expression. In human breast epithelial cell lines MCF10A and HMEC, recombinant human IL10 reduced cell viability and CCND1 transcript levels, increased those of TP53 and p21, and promoted (MCF10A) apoptosis. Our findings suggest that breast adipose-associated IL10 may mediate paracrine interactions between non-diseased breast adipose and breast glandular compartments and highlight how breast adipose may program the local inflammatory milieu, partly by recruiting FOXP3+ T regulatory cells, to influence premenopausal breast cancer risk.


Assuntos
Tecido Adiposo/metabolismo , Mama/metabolismo , Epitélio/metabolismo , Interleucina-10/metabolismo , Fenótipo , Pré-Menopausa/metabolismo , Adipócitos/imunologia , Adipócitos/metabolismo , Adiposidade , Adulto , Biomarcadores , Mama/patologia , Neoplasias da Mama/etiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Citocinas/genética , Citocinas/metabolismo , Feminino , Expressão Gênica , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/metabolismo , Humanos , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Obesidade/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Telômero/genética , Telômero/metabolismo , Adulto Jovem
14.
Elife ; 102021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34319231

RESUMO

Mutations within the kinase domain of the epidermal growth factor receptor (EGFR) are common oncogenic driver events in non-small cell lung cancer. Although the activation of EGFR in normal cells is primarily driven by growth-factor-binding-induced dimerization, mutations on different exons of the kinase domain of the receptor have been found to affect the equilibrium between its active and inactive conformations giving rise to growth-factor-independent kinase activation. Using molecular dynamics simulations combined with enhanced sampling techniques, we compare here the conformational landscape of the monomers and homodimers of the wild-type and mutated forms of EGFR ΔELREA and L858R, as well as of two exon 20 insertions, D770-N771insNPG, and A763-Y764insFQEA. The differences in the conformational energy landscapes are consistent with multiple mechanisms of action including the regulation of the hinge motion, the stabilization of the dimeric interface, and local unfolding transitions. Overall, a combination of different effects is caused by the mutations and leads to the observed aberrant signaling.


Assuntos
Mutação , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/genética , Simulação de Dinâmica Molecular , Ligação Proteica
15.
Eur Radiol ; 31(12): 9296-9305, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34041571

RESUMO

OBJECTIVES: MRI quantification of liver iron concentration (LIC) using R2 or R2* relaxometry requires offline post-processing causing reporting delays, administrative overhead, and added costs. A prototype 3D multi-gradient-echo pulse sequence, with inline post-processing, allows immediate calculation of LIC from an R2* map (inline R2*-LIC) without offline processing. We compared inline R2*-LIC to FerriScan and offline R2* calibration methods. METHODS: Forty patients (25 women, 15 men; age 18-82 years), prospectively underwent FerriScan and the prototype sequence, which produces two R2* maps, with and without fat modeling, as well as an inline R2*-LIC map derived from the R2* map with fat modeling, with informed consent. For each map, the following contours were drawn: ROIs, whole-axial-liver contour, and an exact copy of contour utilized by FerriScan. LIC values from the FerriScan report and those calculated using an alternative R2 calibration were the reference standards. Results were compared using Pearson and interclass correlation coefficients (PCC, ICC), linear regression, Bland-Altman analysis, and estimation of area under the receiver operator curve (ROC-AUC). RESULTS: Inline R2*-LIC demonstrated good agreement with the reference standards. Compared to FerriScan, inline R2*-LIC with whole-axial-liver contour, ROIs, and FerriScan contour demonstrated PCC of 94.8%, 94.8%, and 92%; ICC 93%, 92.7%, and 90.2%; regression slopes 1.004, 0.974, and 1.031; mean bias 5.54%, 10.91%, and 0.36%; and ROC-AUC estimates 0.903, 0.906, and 0.890 respectively. Agreement was maintained when adjusted for sex, age, diagnosis, liver fat content, and fat-water swap. CONCLUSION: Inline R2*-LIC provides robust and comparable quantification of LIC compared to FerriScan, without the need for offline post-processing. KEY POINTS: • In patients being treated for iron overload with chelation therapy, liver iron concentration (LIC) is regularly assessed in order to monitor and adjust therapy. • Magnetic resonance imaging (MRI) is commonly used to quantify LIC. Several R2 and R2* methods are available, all of which require offline post-processing. • A novel R2* MRI method allows for immediate calculation of LIC and provides comparable quantification of LIC to the FerriScan and recently published alternative R2* methods.


Assuntos
Sobrecarga de Ferro , Ferro , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Terapia por Quelação , Feminino , Humanos , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/tratamento farmacológico , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
J Biol Chem ; 296: 100139, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33268380

RESUMO

CXCR4, a member of the family of chemokine-activated G protein-coupled receptors, is widely expressed in immune response cells. It is involved in both cancer development and progression as well as viral infection, notably by HIV-1. A variety of methods, including structural information, have suggested that the receptor may exist as a dimer or an oligomer. However, the mechanistic details surrounding receptor oligomerization and its potential dynamic regulation remain unclear. Using both biochemical and biophysical means, we confirm that CXCR4 can exist as a mixture of monomers, dimers, and higher-order oligomers in cell membranes and show that oligomeric structure becomes more complex as receptor expression levels increase. Mutations of CXCR4 residues located at a putative dimerization interface result in monomerization of the receptor. Additionally, binding of the CXCR4 antagonist IT1t-a small drug-like isothiourea derivative-rapidly destabilizes the oligomeric structure, whereas AMD3100, another well-characterized CXCR4 antagonist, does not. Although a mutation that regulates constitutive activity of CXCR4 also results in monomerization of the receptor, binding of IT1t to this variant promotes receptor dimerization. These results provide novel insights into the basal organization of CXCR4 and how antagonist ligands of different chemotypes differentially regulate its oligomerization state.


Assuntos
Benzilaminas/farmacologia , Ciclamos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Tioureia/farmacologia , Fármacos Anti-HIV/farmacologia , Células Cultivadas , Proteínas de Fluorescência Verde/metabolismo , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Ligantes , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Receptores CXCR4/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
17.
Mol Cancer Ther ; 20(2): 238-249, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33273059

RESUMO

The RAS-regulated RAF-MEK1/2-ERK1/2 (RAS/MAPK) signaling pathway is a major driver in oncogenesis and is frequently dysregulated in human cancers, primarily by mutations in BRAF or RAS genes. The clinical benefit of inhibitors of this pathway as single agents has only been realized in BRAF-mutant melanoma, with limited effect of single-agent pathway inhibitors in KRAS-mutant tumors. Combined inhibition of multiple nodes within this pathway, such as MEK1/2 and ERK1/2, may be necessary to effectively suppress pathway signaling in KRAS-mutant tumors and achieve meaningful clinical benefit. Here, we report the discovery and characterization of AZD0364, a novel, reversible, ATP-competitive ERK1/2 inhibitor with high potency and kinase selectivity. In vitro, AZD0364 treatment resulted in inhibition of proximal and distal biomarkers and reduced proliferation in sensitive BRAF-mutant and KRAS-mutant cell lines. In multiple in vivo xenograft models, AZD0364 showed dose- and time-dependent modulation of ERK1/2-dependent signaling biomarkers resulting in tumor regression in sensitive BRAF- and KRAS-mutant xenografts. We demonstrate that AZD0364 in combination with the MEK1/2 inhibitor, selumetinib (AZD6244 and ARRY142886), enhances efficacy in KRAS-mutant preclinical models that are moderately sensitive or resistant to MEK1/2 inhibition. This combination results in deeper and more durable suppression of the RAS/MAPK signaling pathway that is not achievable with single-agent treatment. The AZD0364 and selumetinib combination also results in significant tumor regressions in multiple KRAS-mutant xenograft models. The combination of ERK1/2 and MEK1/2 inhibition thereby represents a viable clinical approach to target KRAS-mutant tumors.


Assuntos
Benzimidazóis/uso terapêutico , Imidazóis/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pirazinas/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Benzimidazóis/farmacologia , Modelos Animais de Doenças , Humanos , Imidazóis/farmacologia , Camundongos , Camundongos Nus , Pirazinas/farmacologia , Pirimidinas/farmacologia
18.
Clin Cancer Res ; 27(1): 189-201, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33028591

RESUMO

PURPOSE: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy. EXPERIMENTAL DESIGN: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple in vitro and in vivo BBB preclinical models. RESULTS: In vitro osimertinib was the weakest substrate for human BBB efflux transporters (efflux ratio 3.2). In vivo rat free brain to free plasma ratios (Kpuu) show osimertinib has the most BBB penetrance (0.21), compared with the other TKIs (Kpuu ≤ 0.12). PET imaging in Cynomolgus macaques demonstrated osimertinib was the only TKI among those tested to achieve significant brain penetrance (C max %ID 1.5, brain/blood Kp 2.6). Desorption electrospray ionization mass spectroscopy images of brains from mouse PC9 macrometastases models showed osimertinib readily distributes across both healthy brain and tumor tissue. Comparison of osimertinib with the poorly BBB penetrant afatinib in a mouse PC9 model of subclinical brain metastases showed only osimertinib has a significant effect on rate of brain tumor growth. CONCLUSIONS: These preclinical studies indicate that osimertinib can achieve significant exposure in the brain compared with the other EGFR-TKIs tested and supports the ongoing clinical evaluation of osimertinib for the treatment of EGFR-mutant brain metastasis. This work also demonstrates the link between low in vitro transporter efflux ratios and increased brain penetrance in vivo supporting the use of in vitro transporter assays as an early screen in drug discovery.


Assuntos
Acrilamidas/farmacocinética , Compostos de Anilina/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacocinética , Acrilamidas/administração & dosagem , Compostos de Anilina/administração & dosagem , Animais , Neoplasias Encefálicas/secundário , Cães , Receptores ErbB/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/patologia , Macaca fascicularis , Células Madin Darby de Rim Canino , Masculino , Camundongos , Permeabilidade , Inibidores de Proteínas Quinases/administração & dosagem , Ratos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Chem Rev ; 121(6): 3297-3351, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32692162

RESUMO

There has been huge progress in the discovery of targeted cancer therapies in recent years. However, even for the most successful and impactful cancer drugs which have been approved, both innate and acquired mechanisms of resistance are commonplace. These emerging mechanisms of resistance have been studied intensively, which has enabled drug discovery scientists to learn how it may be possible to overcome such resistance in subsequent generations of treatments. In some cases, novel drug candidates have been able to supersede previously approved agents; in other cases they have been used sequentially or in combinations with existing treatments. This review summarizes the current field in terms of the challenges and opportunities that cancer resistance presents to drug discovery scientists, with a focus on small molecule therapeutics. As part of this review, common themes and approaches have been identified which have been utilized to successfully target emerging mechanisms of resistance. This includes the increase in target potency and selectivity, alternative chemical scaffolds, change of mechanism of action (covalents, PROTACs), increases in blood-brain barrier permeability (BBBP), and the targeting of allosteric pockets. Finally, wider approaches are covered such as monoclonal antibodies (mAbs), bispecific antibodies, antibody drug conjugates (ADCs), and combination therapies.


Assuntos
Anticorpos Monoclonais/química , Antineoplásicos/química , Imunoconjugados/química , Sítio Alostérico , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Barreira Hematoencefálica/metabolismo , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoconjugados/farmacologia , Modelos Moleculares , Medicina de Precisão , Ligação Proteica , Conformação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
20.
Cell Commun Signal ; 18(1): 175, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148274

RESUMO

The regulation of the translation of messenger RNA (mRNA) in eukaryotic cells is critical for gene expression, and occurs principally at the initiation phase which is mainly regulated by eukaryotic initiation factors (eIFs). eIFs are fundamental for the translation of mRNA and as such act as the primary targets of several signaling pathways to regulate gene expression. Mis-regulated mRNA expression is a common feature of tumorigenesis and the abnormal activity of eIF complexes triggered by upstream signaling pathways is detected in many tumors, leading to the selective translation of mRNA encoding proteins involved in tumorigenesis, metastasis, or resistance to anti-cancer drugs, and making eIFs a promising therapeutic target for various types of cancers. Here, we briefly outline our current understanding of the biology of eIFs, mainly focusing on the effects of several signaling pathways upon their functions and discuss their contributions to the initiation and progression of tumor growth. An overview of the progress in developing agents targeting the components of translation machinery for cancer treatment is also provided. Video abstract.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Humanos , Modelos Biológicos , Neoplasias/genética , Biossíntese de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA