Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1237722, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965006

RESUMO

Metal homeostasis has evolved to tightly modulate the availability of metals within the cell, avoiding cytotoxic interactions due to excess and protein inactivity due to deficiency. Even in the presence of homeostatic processes, however, low bioavailability of these essential metal nutrients in soils can negatively impact crop health and yield. While research has largely focused on how plants assimilate metals, acclimation to metal-limited environments requires a suite of strategies that are not necessarily involved in metal transport across membranes. The identification of these mechanisms provides a new opportunity to improve metal-use efficiency and develop plant foodstuffs with increased concentrations of bioavailable metal nutrients. Here, we investigate the function of two distinct subfamilies of the nucleotide-dependent metallochaperones (NMCs), named ZNG1 and ZNG2, that are found in plants, using Arabidopsis thaliana as a reference organism. AtZNG1 (AT1G26520) is an ortholog of human and fungal ZNG1, and like its previously characterized eukaryotic relatives, localizes to the cytosol and physically interacts with methionine aminopeptidase type I (AtMAP1A). Analysis of AtZNG1, AtMAP1A, AtMAP2A, and AtMAP2B transgenic mutants are consistent with the role of Arabidopsis ZNG1 as a Zn transferase for AtMAP1A, as previously described in yeast and zebrafish. Structural modeling reveals a flexible cysteine-rich loop that we hypothesize enables direct transfer of Zn from AtZNG1 to AtMAP1A during GTP hydrolysis. Based on proteomics and transcriptomics, loss of this ancient and conserved mechanism has pleiotropic consequences impacting the expression of hundreds of genes, including those involved in photosynthesis and vesicle transport. Members of the plant-specific family of NMCs, ZNG2A1 (AT1G80480) and ZNG2A2 (AT1G15730), are also required during Zn deficiency, but their target protein(s) remain to be discovered. RNA-seq analyses reveal wide-ranging impacts across the cell when the genes encoding these plastid-localized NMCs are disrupted.

2.
Plant Biotechnol J ; 21(12): 2458-2472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37530518

RESUMO

Numerous staple crops exhibit polyploidy and are difficult to genetically modify. However, recent advances in genome sequencing and editing have enabled polyploid genome engineering. The hexaploid black nightshade species Solanum nigrum has immense potential as a beneficial food supplement. We assembled its genome at the scaffold level. After functional annotations, we identified homoeologous gene sets, with similar sequence and expression profiles, based on comparative analyses of orthologous genes with close diploid relatives Solanum americanum and S. lycopersicum. Using CRISPR-Cas9-mediated mutagenesis, we generated various mutation combinations in homoeologous genes. Multiple mutants showed quantitative phenotypic changes based on the genotype, resulting in a broad-spectrum effect on the quantitative traits of hexaploid S. nigrum. Furthermore, we successfully improved the fruit productivity of Boranong, an orphan cultivar of S. nigrum suggesting that engineering homoeologous genes could be useful for agricultural improvement of polyploid crops.


Assuntos
Produtos Agrícolas , Poliploidia , Sequência de Bases , Mapeamento Cromossômico/métodos , Mutação , Fenótipo , Produtos Agrícolas/genética , Genoma de Planta/genética , Edição de Genes
3.
Methods Mol Biol ; 2443: 101-131, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037202

RESUMO

Gramene is an integrated bioinformatics resource for accessing, visualizing, and comparing plant genomes and biological pathways. Originally targeting grasses, Gramene has grown to host annotations for over 90 plant genomes including agronomically important cereals (e.g., maize, sorghum, wheat, teff), fruits and vegetables (e.g., apple, watermelon, clementine, tomato, cassava), specialty crops (e.g., coffee, olive tree, pistachio, almond), and plants of special or emerging interest (e.g., cotton, tobacco, cannabis, or hemp). For some species, the resource includes multiple varieties of the same species, which has paved the road for the creation of species-specific pan-genome browsers. The resource also features plant research models, including Arabidopsis and C4 warm-season grasses and brassicas, as well as other species that fill phylogenetic gaps for plant evolution studies. Its strength derives from the application of a phylogenetic framework for genome comparison and the use of ontologies to integrate structural and functional annotation data. This chapter outlines system requirements for end-users and database hosting, data types and basic navigation within Gramene, and provides examples of how to (1) explore Gramene's search results, (2) explore gene-centric comparative genomics data visualizations in Gramene, and (3) explore genetic variation associated with a gene locus. This is the first publication describing in detail Gramene's integrated search interface-intended to provide a simplified entry portal for the resource's main data categories (genomic location, phylogeny, gene expression, pathways, and external references) to the most complete and up-to-date set of plant genome and pathway annotations.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Produtos Agrícolas/genética , Genômica/métodos , Filogenia
4.
Nucleic Acids Res ; 49(D1): D1452-D1463, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33170273

RESUMO

Gramene (http://www.gramene.org), a knowledgebase founded on comparative functional analyses of genomic and pathway data for model plants and major crops, supports agricultural researchers worldwide. The resource is committed to open access and reproducible science based on the FAIR data principles. Since the last NAR update, we made nine releases; doubled the genome portal's content; expanded curated genes, pathways and expression sets; and implemented the Domain Informational Vocabulary Extraction (DIVE) algorithm for extracting gene function information from publications. The current release, #63 (October 2020), hosts 93 reference genomes-over 3.9 million genes in 122 947 families with orthologous and paralogous classifications. Plant Reactome portrays pathway networks using a combination of manual biocuration in rice (320 reference pathways) and orthology-based projections to 106 species. The Reactome platform facilitates comparison between reference and projected pathways, gene expression analyses and overlays of gene-gene interactions. Gramene integrates ontology-based protein structure-function annotation; information on genetic, epigenetic, expression, and phenotypic diversity; and gene functional annotations extracted from plant-focused journals using DIVE. We train plant researchers in biocuration of genes and pathways; host curated maize gene structures as tracks in the maize genome browser; and integrate curated rice genes and pathways in the Plant Reactome.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos , Proteínas de Plantas/genética , Plantas/genética , Produtos Agrícolas , Elementos de DNA Transponíveis , Duplicação Gênica , Ontologia Genética , Redes Reguladoras de Genes , Internet , Bases de Conhecimento , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/metabolismo , Poliploidia , Mapeamento de Interação de Proteínas , Software , Zea mays/genética , Zea mays/metabolismo
5.
Sci Data ; 7(1): 399, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203859

RESUMO

The PacBio® HiFi sequencing method yields highly accurate long-read sequencing datasets with read lengths averaging 10-25 kb and accuracies greater than 99.5%. These accurate long reads can be used to improve results for complex applications such as single nucleotide and structural variant detection, genome assembly, assembly of difficult polyploid or highly repetitive genomes, and assembly of metagenomes. Currently, there is a need for sample data sets to both evaluate the benefits of these long accurate reads as well as for development of bioinformatic tools including genome assemblers, variant callers, and haplotyping algorithms. We present deep coverage HiFi datasets for five complex samples including the two inbred model genomes Mus musculus and Zea mays, as well as two complex genomes, octoploid Fragaria × ananassa and the diploid anuran Rana muscosa. Additionally, we release sequence data from a mock metagenome community. The datasets reported here can be used without restriction to develop new algorithms and explore complex genome structure and evolution. Data were generated on the PacBio Sequel II System.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Camundongos/genética , Zea mays/genética , Animais , Fragaria/genética , Genoma de Planta , Metagenoma , Ranidae/genética , Análise de Sequência de DNA
6.
Plant Cell ; 29(11): 2687-2710, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28947489

RESUMO

Plant plastids and mitochondria have dynamic proteomes. Protein homeostasis in these organelles is maintained by a proteostasis network containing protein chaperones, peptidases, and their substrate recognition factors. However, many peptidases, as well as their functional connections and substrates, are poorly characterized. This review provides a systematic insight into the organellar peptidase network in Arabidopsis thaliana We present a compendium of known and putative Arabidopsis peptidases and inhibitors, and compare the distribution of plastid and mitochondrial peptidases to the total peptidase complement. This comparison shows striking biases, such as the (near) absence of cysteine and aspartic peptidases and peptidase inhibitors, whereas other peptidase families were exclusively organellar; reasons for such biases are discussed. A genome-wide mRNA-based coexpression data set was generated based on quality controlled and normalized public data, and used to infer additional plastid peptidases and to generate a coexpression network for 97 organellar peptidase baits (1742 genes, making 2544 edges). The graphical network includes 10 modules with specialized/enriched functions, such as mitochondrial protein maturation, thermotolerance, senescence, or enriched subcellular locations such as the thylakoid lumen or chloroplast envelope. The peptidase compendium, including the autophagy and proteosomal systems, and the annotation based on the MEROPS nomenclature of peptidase clans and families, is incorporated into the Plant Proteome Database.


Assuntos
Proteínas de Arabidopsis/metabolismo , Mitocôndrias/enzimologia , Peptídeo Hidrolases/metabolismo , Plastídeos/enzimologia , Proteínas de Arabidopsis/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Mitocôndrias/genética , Peptídeo Hidrolases/classificação , Peptídeo Hidrolases/genética , Filogenia , Plastídeos/genética , Proteoma/genética , Proteoma/metabolismo , Proteostase/genética
7.
Nucleic Acids Res ; 44(D1): D574-80, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26578574

RESUMO

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


Assuntos
Bases de Dados Genéticas , Genoma Bacteriano , Genoma Fúngico , Genoma de Planta , Invertebrados/genética , Animais , Diploide , Eucariotos/genética , Variação Genética , Genoma , Poliploidia , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA