Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35452600

RESUMO

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Assuntos
Células T de Memória , Transportadores de Ácidos Monocarboxílicos , Lactatos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Ácido Pirúvico/metabolismo
2.
Dev Cell ; 56(22): 3066-3081.e5, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34706263

RESUMO

In Arabidopsis mature seeds, the onset of the embryo-to-seedling transition is nonautonomously controlled, being blocked by endospermic abscisic acid (ABA) release under unfavorable conditions. Whether the mature endosperm governs additional nonautonomous developmental processes during this transition is unknown. Mature embryos have a more permeable cuticle than seedlings, consistent with their endospermic ABA uptake capability. Seedlings acquire their well-sealing cuticles adapted to aerial lifestyle during germination. Endosperm removal prevents seedling cuticle formation, and seed reconstitution by endosperm grafting onto embryos shows that the endosperm promotes seedling cuticle development. Grafting different endosperm and embryo mutant combinations, together with biochemical, microscopy, and mass spectrometry approaches, reveal that the release of tyrosylprotein sulfotransferase (TPST)-sulfated CIF2 and PSY1 peptides from the endosperm promotes seedling cuticle development. Endosperm-deprived embryos produced nonviable seedlings bearing numerous developmental defects, not related to embryo malnutrition, all restored by exogenously provided endosperm. Hence, seedling establishment is nonautonomous, requiring the mature endosperm.


Assuntos
Arabidopsis/metabolismo , Endosperma/metabolismo , Peptídeos/metabolismo , Plântula/metabolismo , Sulfatos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação , Plantas , Sementes/metabolismo
3.
Appl Microbiol Biotechnol ; 101(10): 4129-4137, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28229206

RESUMO

Prolyl peptidases of the MEROPS S28 family are of particular interest because they are key enzymes in the digestion of proline-rich peptides. A BLAST analysis of the Aspergillus oryzae genome revealed sequences coding for four proteases of the S28 family. Three of these proteases, AoS28A, AoS28B, and AoS28C, were previously characterized as acidic prolyl endopeptidases. The fourth protease, AoS28D, showed high sequence divergence with other S28 proteases and belongs to a phylogenetically distinct cluster together with orthologous proteases from other Aspergillus species. The objective of the present paper was to characterize AoS28D protease in terms of substrate specificity and activity. AoS28D produced by gene overexpression in A. oryzae and in Pichia pastoris was a 70-kDa glycoprotein with a 10-kDa sugar moiety. In contrast with other S28 proteases, AoS28D did not hydrolyze internal Pro-Xaa bonds of several tested peptides. Similarly, to human lysosomal Pro-Xaa carboxypeptidase, AoS28D demonstrated selectivity for cleaving C-terminal Pro-Xaa bonds which are resistant to carboxypeptidases of the S10 family concomitantly secreted by A. oryzae. Therefore, AoS28D could act in synergy with these enzymes during sequential degradation of a peptide from its C-terminus.


Assuntos
Aspergillus oryzae/enzimologia , Carboxipeptidases/química , Carboxipeptidases/metabolismo , Prolina/metabolismo , Angiotensinas/metabolismo , Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Bradicinina/metabolismo , Carboxipeptidases/genética , Genoma Fúngico , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Pichia/genética , Especificidade por Substrato
4.
Cell Metab ; 25(1): 102-117, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27818260

RESUMO

Diurnal oscillations of gene expression controlled by the circadian clock and its connected feeding rhythm enable organisms to coordinate their physiologies with daily environmental cycles. While available techniques yielded crucial insights into regulation at the transcriptional level, much less is known about temporally controlled functions within the nucleus and their regulation at the protein level. Here, we quantified the temporal nuclear accumulation of proteins and phosphoproteins from mouse liver by SILAC proteomics. We identified around 5,000 nuclear proteins, over 500 of which showed a diurnal accumulation. Parallel analysis of the nuclear phosphoproteome enabled the inference of the temporal activity of kinases accounting for rhythmic phosphorylation. Many identified rhythmic proteins were parts of nuclear complexes involved in transcriptional regulation, ribosome biogenesis, DNA repair, and the cell cycle and its potentially associated diurnal rhythm of hepatocyte polyploidy. Taken together, these findings provide unprecedented insights into the diurnal regulatory landscape of the mouse liver nucleus.


Assuntos
Núcleo Celular/metabolismo , Ritmo Circadiano , Fígado/metabolismo , Proteômica/métodos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Reparo do DNA , Regulação da Expressão Gênica , Marcação por Isótopo , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas Nucleares/metabolismo , Biogênese de Organelas , Fosfoproteínas/metabolismo , Fosforilação , Poliploidia , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Ribossomos/metabolismo , Fatores de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Sci Total Environ ; 545-546: 21-9, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26745289

RESUMO

Tamoxifen and its metabolite 4-hydroxy-tamoxifen (4OHTam) are two potent molecules that have anticancer properties on breast cancers. Their medical use is expected to increase with the increasing global cancer rate. After consumption, patients excrete tamoxifen and the 4OHTam metabolite into wastewaters, and tamoxifen has been already detected in wastewaters and natural waters. The concentrations of 4OHTam in waters have never been reported. A single study reported 4OHTam effects on the microcrustacean Daphnia pulex. The effects of tamoxifen and 4OHTam over more than two generations are unknown in aquatic invertebrates. The main goal of this study was to assess the long-term sensitivity of the microcrustacean D. pulex over four generations, based on size, reproduction, viability and the intrinsic rate of natural increase (r). Additional experiments were carried out to observe whether the effects of tamoxifen and 4OHTam were reversible in the next generation after descendants were withdrawn from chemical stress (i.e., recovery experiment), and whether the lowest test concentration of each chemical induced toxic effects when both concentrations were combined (i.e., mixture experiments). Our results showed that tamoxifen and 4OHTam induced the adverse effects at environmentally relevant concentrations. Tamoxifen and 4OHTam impaired size, viability, reproduction and the r in four generations of treated D. pulex, but these effects were not clearly magnified over generations. Tamoxifen was more potent than 4OHTam on D. pulex. When used in a mixture, the combination of tamoxifen and 4OHTam induced effects in offspring, whereas no effects were observed when these chemicals were tested individually. In the recovery experiment, the reproduction and size were reduced in offspring withdrawn from chemical exposures. Our results suggested that tamoxifen and its metabolite may be a relevant pharmaceutical to consider in risk assessment.


Assuntos
Antineoplásicos/toxicidade , Tamoxifeno/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Daphnia , Humanos , Tamoxifeno/toxicidade
6.
J Proteomics ; 120: 215-29, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25782750

RESUMO

Inhibition of the essential chaperone Hsp90 with drugs causes a global perturbation of protein folding and the depletion of direct substrates of Hsp90, also called clients. Ubiquitination and proteasomal degradation play a key role in cellular stress responses, but the impact of Hsp90 inhibition on the ubiquitinome has not been characterized on a global scale. We used stable isotope labeling and antibody-based peptide enrichment to quantify more than 1500 protein sites modified with a Gly-Gly motif, the remnant of ubiquitination, in human T-cells treated with an Hsp90 inhibitor. We observed rapid changes in GlyGly-modification sites, with strong increases for some Hsp90 clients but also decreases for a majority of cellular proteins. A comparison with changes in total protein levels and protein synthesis and decay rates from a previous study revealed a complex picture with different regulatory patterns observed for different protein families. Overall the data support the notion that for Hsp90 clients GlyGly-modification correlates with targeting by the ubiquitin-proteasome system and decay, while for other proteins levels of GlyGly-modification appear to be mainly influenced by their synthesis rates. Therefore a correct interpretation of changes in ubiquitination requires knowledge of multiple parameters. Data are available via ProteomeXchange with identifier PXD001549. BIOLOGICAL SIGNIFICANCE: Proteostasis, i.e. the capacity of the cell to maintain proper synthesis and maturation of proteins, is a fundamental biological process and its perturbations have far-reaching medical implications e.g. in cancer or neurodegenerative diseases. Hsp90 is an essential chaperone responsible for the correct maturation and stability of a number of key proteins. Inhibition of Hsp90 triggers a global stress response caused by accumulation of misfolded chains, which have to be either refolded or eliminated by protein degradation pathways such as the Ubiquitin-Proteasome System (UPS). We present the first global assessment of the changes in the ubiquitinome, the subset of ubiquitin-modified proteins, following Hsp90 inhibition in human T-cells. The results provide clues on how cells respond to a specific proteostasis challenge. Furthermore, our data also suggest that basal ubiquitination levels for most proteins are influenced by synthesis rates. This has broad significance as it implies that a proper interpretation of data on ubiquitination levels necessitates simultaneous knowledge of other parameters.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Proteoma/metabolismo , Ubiquitina/metabolismo , Proteínas Ubiquitinadas/metabolismo , Ubiquitinação/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Células Jurkat
7.
Sci Total Environ ; 520: 232-40, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25817760

RESUMO

Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3 µg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4 µg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.


Assuntos
Antineoplásicos/toxicidade , Tamoxifeno/análogos & derivados , Poluentes Químicos da Água/toxicidade , Animais , Daphnia , Tamoxifeno/toxicidade
8.
J Proteome Res ; 14(1): 279-91, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25350372

RESUMO

Among pollutants released into the environment by human activities, residues of pharmaceuticals are an increasing matter of concern because of their potential impact on ecosystems. The aim of this study was to analyze differences of protein expression resulting from acute (2 days) and middle-term (7 days) exposure of aquatic microcrustacean Daphnia pulex to the anticancer drug tamoxifen. Using a liquid chromatography-mass spectrometry shotgun approach, about 4000 proteins could be identified, providing the largest proteomics data set of D. pulex published up to now. Considering both time points and tested concentrations, 189 proteins showed a significant fold change. The identity of regulated proteins suggested a decrease in translation, an increase in protein degradation and changes in carbohydrate and lipid metabolism as the major effects of the drug. Besides these impacted processes, which reflect a general stress response of the organism, some other regulated proteins play a role in Daphnia reproduction. These latter results are in accordance with our previous observations of the impact of tamoxifen on D. pulex reproduction and illustrate the potential of ecotoxicoproteomics to unravel links between xenobiotic effects at the biochemical and organismal levels. Data are available via ProteomeXchange with identifier PXD001257.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteômica/métodos , Tamoxifeno/toxicidade , Xenobióticos/toxicidade , Animais , Cromatografia Líquida , Daphnia/genética , Ecotoxicologia/métodos , Espectrometria de Massas em Tandem , Fatores de Tempo
9.
Artigo em Inglês | MEDLINE | ID: mdl-26779118

RESUMO

Endometriosis affects approximately 10% of women of reproductive age. This chronic, gynecological inflammatory disease results in a decreased quality of life for patients, with the main symptoms including chronic pelvic pain and infertility. The steroid hormone 17-ß Estradiol (E2) plays a key role in the pathology. Our previous studies showed that the anti-inflammatory lipid Lipoxin A4 (LXA4) acts as an estrogen receptor-alpha agonist in endometrial epithelial cells, inhibiting certain E2-mediated effects. LXA4 also prevents the progression of endometriosis in a mouse model via anti-proliferative mechanisms and by impacting mediators downstream of ER signaling. The aim of the present study was therefore to examine global proteomic changes evoked by E2 and LXA4 in endometriotic epithelial cells. E2 impacted a greater number of proteins in endometriotic epithelial cells than LXA4. Interestingly, the combination of E2 and LXA4 resulted in a reduced number of regulated proteins, with LXA4 mediating a suppressive effect on E2-mediated signaling. These proteins are involved in diverse pathways of relevance to endometriosis pathology and metabolism, including mRNA translation, growth, proliferation, proteolysis, and immune responses. In summary, this study sheds light on novel pathways involved in endometriosis pathology and further understanding of signaling pathways activated by estrogenic molecules in endometriotic epithelial cells.

10.
Curr Top Med Chem ; 14(3): 425-34, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24304320

RESUMO

Since the advent of high-throughput DNA sequencing technologies, the ever-increasing rate at which genomes have been published has generated new challenges notably at the level of genome annotation. Even if gene predictors and annotation softwares are more and more efficient, the ultimate validation is still in the observation of predicted gene product( s). Mass-spectrometry based proteomics provides the necessary high throughput technology to show evidences of protein presence and, from the identified sequences, confirmation or invalidation of predicted annotations. We review here different strategies used to perform a MS-based proteogenomics experiment with a bottom-up approach. We start from the strengths and weaknesses of the different database construction strategies, based on different genomic information (whole genome, ORF, cDNA, EST or RNA-Seq data), which are then used for matching mass spectra to peptides and proteins. We also review the important points to be considered for a correct statistical assessment of the peptide identifications. Finally, we provide references for tools used to map and visualize the peptide identifications back to the original genomic information.


Assuntos
Bases de Dados de Ácidos Nucleicos , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Peptídeos/genética , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/análise , Análise de Sequência
11.
Mol Cell Proteomics ; 11(11): 1123-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22843989

RESUMO

Staphylococcus aureus infections involve numerous adhesins and toxins, which expression depends on complex regulatory networks. Adhesins include a family of surface proteins covalently attached to the peptidoglycan via a conserved LPXTG motif. Here we determined the protein and mRNA expression of LPXTG-proteins of S. aureus Newman in time-course experiments, and their relation to fibrinogen adherence in vitro. Experiments were performed with mutants in the global accessory-gene regulator (agr), surface protein A (Spa), and fibrinogen-binding protein A (ClfA), as well as during growth in iron-rich or iron-poor media. Surface proteins were recovered by trypsin-shaving of live bacteria. Released peptides were analyzed by liquid chromatography coupled to tandem mass-spectrometry. To unambiguously identify peptides unique to LPXTG-proteins, the analytical conditions were refined using a reference library of S. aureus LPXTG-proteins heterogeneously expressed in surrogate Lactococcus lactis. Transcriptomes were determined by microarrays. Sixteen of the 18 LPXTG-proteins present in S. aureus Newman were detected by proteomics. Nine LPXTG-proteins showed a bell-shape agr-like expression that was abrogated in agr-negative mutants including Spa, fibronectin-binding protein A (FnBPA), ClfA, iron-binding IsdA, and IsdB, immunomodulator SasH, functionally uncharacterized SasD, biofilm-related SasG and methicillin resistance-related FmtB. However, only Spa and SasH modified their proteomic and mRNA profiles in parallel in the parent and its agr- mutant, whereas all other LPXTG-proteins modified their proteomic profiles independently of their mRNA. Moreover, ClfA became highly transcribed and active in fibrinogen-adherence tests during late growth (24 h), whereas it remained poorly detected by proteomics. On the other hand, iron-regulated IsdA-B-C increased their protein expression by >10-times in iron-poor conditions. Thus, proteomic, transcriptomic, and adherence-phenotype demonstrated differential profiles in S. aureus. Moreover, trypsin peptide signatures suggested differential protein domain exposures in various environments, which might be relevant for anti-adhesin vaccines. A comprehensive understanding of the S. aureus physiology should integrate all three approaches.


Assuntos
Aderência Bacteriana/genética , Perfilação da Expressão Gênica , Proteínas de Membrana/metabolismo , Mutação/genética , Proteômica , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bases de Dados de Proteínas , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genótipo , Ferro/farmacologia , Cinética , Lactococcus/efeitos dos fármacos , Lactococcus/metabolismo , Proteínas de Membrana/genética , Viabilidade Microbiana/efeitos dos fármacos , Biblioteca de Peptídeos , Peptídeos/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tripsina/metabolismo
12.
Chembiochem ; 13(6): 837-45, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22416020

RESUMO

Much research has been dedicated to understanding the molecular basis of UV damage to biomolecules, yet many questions remain regarding the specific pathways involved. Here we describe a genome-mediated mechanism that causes site-specific virus protein cleavage upon UV irradiation. Bacteriophage MS2 was disinfected with 254 nm UV, and protein damage was characterized with ESI- and MALDI-based FT-ICR, Orbitrap, and TOF mass spectroscopy. Top-down mass spectrometry of the products identified the backbone cleavage site as Cys46-Ser47 in the virus capsid protein, a location of viral genome-protein interaction. The presence of viral RNA was essential to inducing backbone cleavage. The similar bacteriophage GA did not exhibit site-specific protein cleavage. Based on the major protein fragments identified by accurate mass analysis, a cleavage mechanism is proposed by radical formation. The mechanism involves initial oxidation of the Cys46 side chain followed by hydrogen atom abstraction from Ser47 C(α). Computational protein QM/MM studies confirmed the initial steps of the radical mechanism. Collectively, this study describes a rare incidence of genome-induced protein cleavage without the addition of sensitizers.


Assuntos
Genoma Viral/efeitos da radiação , Levivirus/metabolismo , Levivirus/efeitos da radiação , Proteínas Virais/metabolismo , Proteínas Virais/efeitos da radiação , Levivirus/genética , Espectrometria de Massas , Raios Ultravioleta , Proteínas Virais/genética
13.
PLoS One ; 6(4): e18369, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21494657

RESUMO

Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.


Assuntos
Variações do Número de Cópias de DNA/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes/genética , Genes Neoplásicos/genética , Melanoma/genética , Melanoma/patologia , Transdução de Sinais/genética , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Bases de Dados Genéticas , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Proteome Res ; 10(2): 800-11, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21166477

RESUMO

In the vast majority of bottom-up proteomics studies, protein digestion is performed using only mammalian trypsin. Although it is clearly the best enzyme available, the sole use of trypsin rarely leads to complete sequence coverage, even for abundant proteins. It is commonly assumed that this is because many tryptic peptides are either too short or too long to be identified by RPLC-MS/MS. We show through in silico analysis that 20-30% of the total sequence of three proteomes (Schizosaccharomyces pombe, Saccharomyces cerevisiae, and Homo sapiens) is expected to be covered by Large post-Trypsin Peptides (LpTPs) with M(r) above 3000 Da. We then established size exclusion chromatography to fractionate complex yeast tryptic digests into pools of peptides based on size. We found that secondary digestion of LpTPs followed by LC-MS/MS analysis leads to a significant increase in identified proteins and a 32-50% relative increase in average sequence coverage compared to trypsin digestion alone. Application of the developed strategy to analyze the phosphoproteomes of S. pombe and of a human cell line identified a significant fraction of novel phosphosites. Overall our data indicate that specific targeting of LpTPs can complement standard bottom-up workflows to reveal a largely neglected portion of the proteome.


Assuntos
Cromatografia em Gel/métodos , Fragmentos de Peptídeos/análise , Fosfoproteínas/química , Proteômica/métodos , Tripsina/química , Linhagem Celular Tumoral , Simulação por Computador , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Fosfoproteínas/metabolismo , Proteoma/química , Proteoma/metabolismo , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Análise de Sequência de Proteína , Tripsina/metabolismo
15.
Mol Cell Proteomics ; 9(3): 579-92, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19955080

RESUMO

Non-enzymatic glycation of proteins is a post-translational modification produced by a reaction between reducing sugars and amino groups located in lysine and arginine residues or in the N-terminal position. This modification plays a relevant role in medicine and food industry. In the clinical field, this undesired role is directly linked to blood glucose concentration and therefore to pathological conditions derived from hyperglycemia (>11 mm glucose) such as diabetes mellitus or renal failure. An approach for qualitative and quantitative analysis of glycated proteins is here proposed to achieve the three information levels for their complete characterization. These are: 1) identification of glycated proteins, 2) elucidation of sugar attachment sites, and 3) quantitative analysis to compare glycemic states. Qualitative analysis was carried out by tandem mass spectrometry after endoproteinase Glu-C digestion and boronate affinity chromatography for isolation of glycated peptides. For this purpose, two MS operational modes were used: higher energy collisional dissociation-MS2 and CID-MS3 by neutral loss scan monitoring of two selective neutral losses (162.05 and 84.04 Da for the glucose cleavage and an intermediate rearrangement of the glucose moiety). On the other hand, quantitative analysis was based on labeling of proteins with [(13)C(6)]glucose incubation to evaluate the native glycated proteins labeled with [(12)C(6)]glucose. As glycation is chemoselective, it is exclusively occurring in potential targets for in vivo modifications. This approach, named glycation isotopic labeling, enabled differentiation of glycated peptides labeled with both isotopic forms resulting from enzymatic digestion by mass spectrometry (6-Da mass shift/glycation site). The strategy was then applied to a reference plasma sample, revealing the detection of 50 glycated proteins and 161 sugar attachment positions with identification of preferential glycation sites for each protein. A predictive approach was also tested to detect potential glycation sites under high glucose concentration.


Assuntos
Proteínas Sanguíneas/análise , Carboidratos/análise , Marcação por Isótopo/métodos , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Proteínas Sanguíneas/química , Carboidratos/química , Isótopos de Carbono/análise , Glicosilação , Humanos , Peptídeos/análise , Peptídeos/química
16.
Mol Cell Proteomics ; 7(5): 927-37, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18165257

RESUMO

Metabolic labeling techniques have recently become popular tools for the quantitative profiling of proteomes. Classical stable isotope labeling with amino acids in cell cultures (SILAC) uses pairs of heavy/light isotopic forms of amino acids to introduce predictable mass differences in protein samples to be compared. After proteolysis, pairs of cognate precursor peptides can be correlated, and their intensities can be used for mass spectrometry-based relative protein quantification. We present an alternative SILAC approach by which two cell cultures are grown in media containing isobaric forms of amino acids, labeled either with 13C on the carbonyl (C-1) carbon or 15N on backbone nitrogen. Labeled peptides from both samples have the same nominal mass and nearly identical MS/MS spectra but generate upon fragmentation distinct immonium ions separated by 1 amu. When labeled protein samples are mixed, the intensities of these immonium ions can be used for the relative quantification of the parent proteins. We validated the labeling of cellular proteins with valine, isoleucine, and leucine with coverage of 97% of all tryptic peptides. We improved the sensitivity for the detection of the quantification ions on a pulsing instrument by using a specific fast scan event. The analysis of a protein mixture with a known heavy/light ratio showed reliable quantification. Finally the application of the technique to the analysis of two melanoma cell lines yielded quantitative data consistent with those obtained by a classical two-dimensional DIGE analysis of the same samples. Our method combines the features of the SILAC technique with the advantages of isobaric labeling schemes like iTRAQ. We discuss advantages and disadvantages of isobaric SILAC with immonium ion splitting as well as possible ways to improve it.


Assuntos
Aminoácidos/metabolismo , Marcação por Isótopo/métodos , Proteínas/análise , Proteômica/métodos , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/química , Meios de Cultura/metabolismo , Eletroforese em Gel Bidimensional , Humanos , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/metabolismo , Peptídeos/análise , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA