Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6947, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935654

RESUMO

Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.


Assuntos
Fatores Reguladores de Interferon , Linfoma , Humanos , Linfócitos B/metabolismo , DNA , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Linfoma/genética
2.
Blood ; 140(17): 1858-1874, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35789258

RESUMO

The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.


Assuntos
Contratura , Leucemia de Células B , Osteocondroma , Humanos , Calcineurina/genética , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Recidiva Local de Neoplasia , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/metabolismo
3.
Blood ; 137(26): 3641-3655, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33786587

RESUMO

The abundance of genetic abnormalities and phenotypic heterogeneities in acute myeloid leukemia (AML) poses significant challenges to the development of improved treatments. Here, we demonstrated that a key growth arrest-specific gene 6/AXL axis is highly activated in cells from patients with AML, particularly in stem/progenitor cells. We developed a potent selective AXL inhibitor that has favorable pharmaceutical properties and efficacy against preclinical patient-derived xenotransplantation (PDX) models of AML. Importantly, inhibition of AXL sensitized AML stem/progenitor cells to venetoclax treatment, with strong synergistic effects in vitro and in PDX models. Mechanistically, single-cell RNA-sequencing and functional validation studies uncovered that AXL inhibition, alone or in combination with venetoclax, potentially targets intrinsic metabolic vulnerabilities of AML stem/progenitor cells and shows a distinct transcriptomic profile and inhibits mitochondrial oxidative phosphorylation. Inhibition of AXL or BCL-2 also differentially targets key signaling proteins to synergize in leukemic cell killing. These findings have a direct translational impact on the treatment of AML and other cancers with high AXL activity.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Sistemas de Liberação de Medicamentos , Leucemia Mieloide Aguda , Células-Tronco Neoplásicas/enzimologia , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor Tirosina Quinase Axl
4.
Allergy Asthma Clin Immunol ; 17(1): 9, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446255

RESUMO

X-linked hypohidrotic ectodermal dysplasia (XLHED) is the most common form of ectodermal dysplasia. Clinical and genetic heterogeneity between different ectodermal dysplasia types and evidence of incomplete penetrance and variable expressivity increase the potential for misdiagnosis. We describe a family with X-linked hypohidrotic ectodermal dysplasia (XLHED) presenting with variable expressivity of symptoms between affected siblings. In addition to the classical signs of hypohidrosis, hypotrichosis and hypodontia, the index patient-a 5 year old boy, also presented with a severe atopy phenotype that was not observed in the other two affected brothers. Exome sequencing in the index and the mother identified a pathogenic nonsense variant in EDA (NM_001399.4: c.766 C>T; p. Gln256Ter). This study highlights how exome sequencing was crucial in establishing a precise molecular diagnosis of XLHED by enabling us to rule out other differential diagnoses including NEMO deficiency syndrome, that was initially presented as a clinical diagnosis to the family.

6.
Front Cell Dev Biol ; 8: 520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671069

RESUMO

X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, and is characterized by the accumulation of very long-chain fatty acids in plasma and tissues. Disease-causing mutations are 'loss of function' mutations, with no prognostic value with respect to the clinical outcome of an individual. All male patients with ALD develop spinal cord disease and a peripheral neuropathy in adulthood, although age of onset is highly variable. However, the lifetime prevalence to develop progressive white matter lesions, termed cerebral ALD (CALD), is only about 60%. Early identification of transition to CALD is critical since it can be halted by allogeneic hematopoietic stem cell therapy only in an early stage. The primary goal of this study is to identify molecular markers which may be prognostic of cerebral demyelination from a simple blood sample, with the hope that blood-based assays can replace the current protocols for diagnosis. We collected six well-characterized brother pairs affected by ALD and discordant for the presence of CALD and performed multi-omic profiling of blood samples including genome, epigenome, transcriptome, metabolome/lipidome, and proteome profiling. In our analysis we identify discordant genomic alleles present across all families as well as differentially abundant molecular features across the omics technologies. The analysis was focused on univariate modeling to discriminate the two phenotypic groups, but was unable to identify statistically significant candidate molecular markers. Our study highlights the issues caused by a large amount of inter-individual variation, and supports the emerging hypothesis that cerebral demyelination is a complex mix of environmental factors and/or heterogeneous genomic alleles. We confirm previous observations about the role of immune response, specifically auto-immunity and the potential role of PFN1 protein overabundance in CALD in a subset of the families. We envision our methodology as well as dataset has utility to the field for reproducing previous or enabling future modifier investigations.

7.
Gene ; 697: 213-226, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30772522

RESUMO

Strabismus refers to the misalignment of the eyes and occurs in 2-4% of individuals. The low-resolution label "strabismus" covers a range of heterogeneous defects, which makes it challenging to unravel this condition. Consequently a coherent understanding of the causes is lacking. Here, we attempt to gain a better understanding of the underlying genetics by combining gene curation, diverse bioinformatic analyses (including gene ontology, pathway mapping, expression and network-based methods) and literature review. Through a phenotype-based curation process, we identify high-confidence and permissive sets of 54 and 233 genes potentially involved in strabismus. These genes can be grouped into 10 modules that together span a heterogeneous set of biological and molecular functions, and can be linked to clinical sub-phenotypes. Multiple lines of evidence associate retina and cerebellum biology with the strabismus genes. We further highlight a potential role of the Ras-MAPK pathway. Independently, sets of 11 genes and 15 loci tied to strabismus with definitive genetic basis have been compiled from the literature. We identify strabismus candidate genes for 5 of the 15 reported loci (CHD7; SLC9A6; COL18A1, COL6A2; FRY, BRCA2, SPG20; PARK2). Finally, we synthesize a Strabismus Candidate Gene Collection, which together with our curated gene sets will serve as a resource for future research. The results of this informatics study support the heterogeneity and complexity of strabismus and point to specific biological pathways and brain regions for future focus.


Assuntos
Estrabismo/genética , Biologia Computacional/métodos , Curadoria de Dados/métodos , Ontologia Genética , Redes Reguladoras de Genes/genética , Genes ras/genética , Humanos , Sistema de Sinalização das MAP Quinases/genética , Transdução de Sinais/genética , Estrabismo/fisiopatologia , Transcriptoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/fisiologia
8.
Hum Gene Ther ; 30(3): 257-272, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30062914

RESUMO

Retinal gene therapy is leading the neurological gene therapy field, with 32 ongoing clinical trials of recombinant adeno-associated virus (rAAV)-based therapies. Importantly, over 50% of those trials are using restricted promoters from human genes. Promoters that restrict expression have demonstrated increased efficacy and can limit the therapeutic to the target cells thereby reducing unwanted off-target effects. Retinal ganglion cells are a critical target in ocular gene therapy; they are involved in common diseases such as glaucoma, rare diseases such as Leber's hereditary optic neuropathy, and in revolutionary optogenetic treatments. Here, we used computational biology and mined the human genome for the best genes from which to develop a novel minimal promoter element(s) designed for expression in restricted cell types (MiniPromoter) to improve the safety and efficacy of retinal ganglion cell gene therapy. Gene selection included the use of the first available droplet-based single-cell RNA sequencing (Drop-seq) dataset, and promoter design was bioinformatically driven and informed by a wide range of genomics datasets. We tested seven promoter designs from four genes in rAAV for specificity and quantified expression strength in retinal ganglion cells in mouse, and then the single best in nonhuman primate retina. Thus, we developed a new human-DNA MiniPromoter, Ple345 (NEFL), which in combination with intravitreal delivery in rAAV9 showed specific and robust expression in the retinal ganglion cells of the nonhuman-primate rhesus macaque retina. In mouse, we also developed MiniPromoters expressing in retinal ganglion cells, the hippocampus of the brain, a pan neuronal pattern in the brain, and peripheral nerves. As single-cell transcriptomics such as Drop-seq become available for other cell types, many new opportunities for additional novel restricted MiniPromoters will present.


Assuntos
Expressão Gênica , Proteínas de Neurofilamentos/genética , Regiões Promotoras Genéticas , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Transgenes , Animais , Biologia Computacional/métodos , Dependovirus/genética , Elementos Facilitadores Genéticos , Feminino , Imunofluorescência , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Macaca mulatta , Camundongos , Especificidade de Órgãos/genética , Retina/citologia
9.
J Am Med Inform Assoc ; 26(2): 124-133, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30535356

RESUMO

Objective: The clinical diagnosis of genetic disorders is undergoing transformation, driven by whole exome sequencing and whole genome sequencing (WES/WGS). However, such nucleotide-level resolution technologies create an interpretive challenge. Prior literature suggests that clinicians may employ characteristic cognitive processes during WES/WGS investigations to identify disruptions in genes causal for the observed disease. Based on cognitive ergonomics, we designed and evaluated a gene prioritization workflow that supported these cognitive processes. Materials and Methods: We designed a novel workflow in which clinicians recalled known genetic diseases with similarity to patient phenotypes to inform WES/WGS data interpretation. This prototype-based workflow was evaluated against the common computational approach based on physician-specified sets of individual patient phenotypes. The evaluation was conducted as a web-based user study, in which 18 clinicians analyzed 2 simulated patient scenarios using a randomly assigned workflow. Data analysis compared the 2 workflows with respect to accuracy and efficiency in diagnostic interpretation, efficacy in collecting detailed phenotypic information, and user satisfaction. Results: Participants interpreted genetic diagnoses faster using prototype-based workflows. The 2 workflows did not differ in other evaluated aspects. Discussion: The user study findings indicate that prototype-based approaches, which are designed to model experts' cognitive processes, can expedite gene prioritization and provide utility in synergy with common phenotype-driven variant/gene prioritization approaches. However, further research of the extent of this effect across diverse genetic diseases is required. Conclusion: The findings demonstrate potential for prototype-based phenotype description to accelerate computer-assisted variant/gene prioritization through complementation of skills and knowledge of clinical experts via human-computer interaction.


Assuntos
Ergonomia , Doenças Raras/genética , Sequenciamento Completo do Genoma , Competência Clínica , Cognição , Tomada de Decisões Assistida por Computador , Feminino , Genoma Humano , Humanos , Masculino , Síndrome de Smith-Lemli-Opitz/genética , Esclerose Tuberosa/genética , Interface Usuário-Computador , Sequenciamento do Exoma , Fluxo de Trabalho
10.
JCI Insight ; 3(24)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30568043

RESUMO

Sialic acids are important components of glycoproteins and glycolipids essential for cellular communication, infection, and metastasis. The importance of sialic acid biosynthesis in human physiology is well illustrated by the severe metabolic disorders in this pathway. However, the biological role of sialic acid catabolism in humans remains unclear. Here, we present evidence that sialic acid catabolism is important for heart and skeletal muscle function and development in humans and zebrafish. In two siblings, presenting with sialuria, exercise intolerance/muscle wasting, and cardiac symptoms in the brother, compound heterozygous mutations [chr1:182775324C>T (c.187C>T; p.Arg63Cys) and chr1:182772897A>G (c.133A>G; p.Asn45Asp)] were found in the N-acetylneuraminate pyruvate lyase gene (NPL). In vitro, NPL activity and sialic acid catabolism were affected, with a cell-type-specific reduction of N-acetyl mannosamine (ManNAc). A knockdown of NPL in zebrafish resulted in severe skeletal myopathy and cardiac edema, mimicking the human phenotype. The phenotype was rescued by expression of wild-type human NPL but not by the p.Arg63Cys or p.Asn45Asp mutants. Importantly, the myopathy phenotype in zebrafish embryos was rescued by treatment with the catabolic products of NPL: N-acetyl glucosamine (GlcNAc) and ManNAc; the latter also rescuing the cardiac phenotype. In conclusion, we provide the first report to our knowledge of a human defect in sialic acid catabolism, which implicates an important role of the sialic acid catabolic pathway in mammalian muscle physiology, and suggests opportunities for monosaccharide replacement therapy in human patients.


Assuntos
Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Edema Cardíaco/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Células HEK293 , Hexosaminas/metabolismo , Humanos , Masculino , Músculo Esquelético/crescimento & desenvolvimento , Doenças Musculares/fisiopatologia , Mutação , Oxo-Ácido-Liases/uso terapêutico , Doença do Armazenamento de Ácido Siálico/metabolismo , Adulto Jovem , Peixe-Zebra/embriologia
11.
J Biol Chem ; 293(33): 12805-12819, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29934305

RESUMO

Leishmania species are intracellular protozoan pathogens that have evolved to successfully infect and deactivate host macrophages. How this deactivation is brought about is not completely understood. Recently, microRNAs (miRNAs) have emerged as ubiquitous regulators of macrophage gene expression that contribute to shaping the immune responses to intracellular pathogens. Conversely, several pathogens have evolved the ability to exploit host miRNA expression to manipulate host-cell phenotype. However, very little is known about the mechanisms used by intracellular pathogens to drive changes in host-cell miRNA abundance. Using miRNA expression profiling of Leishmania donovani-infected human macrophages, we show here that Leishmania infection induced a genome-wide down-regulation of host miRNAs. This repression occurred at the level of miRNA gene transcription, because the synthesis rates of primary miRNAs were significantly decreased in infected cells. miRNA repression depended on the host macrophage transcription factor c-Myc. Indeed, the expression of host c-Myc was markedly up-regulated by Leishmania infection, and c-Myc silencing reversed the miRNA suppression. Furthermore, c-Myc silencing significantly reduced intracellular survival of Leishmania, demonstrating that c-Myc is essential for Leishmania pathogenesis. Taken together, these findings identify c-Myc not only as being responsible for miRNA repression in Leishmania-infected macrophages but also as a novel and essential virulence factor by proxy that promotes Leishmania survival.


Assuntos
Leishmania donovani , Leishmaniose Visceral/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Virulência/metabolismo , Humanos , Leishmania donovani/metabolismo , Leishmania donovani/patogenicidade , Leishmaniose Visceral/patologia , Macrófagos/parasitologia , Macrófagos/patologia
12.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29754820

RESUMO

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análise por Conglomerados , Feminino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Perda de Heterozigosidade , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias Ovarianas/classificação , Neoplasias Ovarianas/imunologia , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Sequenciamento Completo do Genoma , Adulto Jovem
13.
Mol Genet Metab ; 123(1): 28-42, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331171

RESUMO

BACKGROUND: Mitochondrial diseases, a group of multi-systemic disorders often characterized by tissue-specific phenotypes, are usually progressive and fatal disorders resulting from defects in oxidative phosphorylation. MTO1 (Mitochondrial tRNA Translation Optimization 1), an evolutionarily conserved protein expressed in high-energy demand tissues has been linked to human early-onset combined oxidative phosphorylation deficiency associated with hypertrophic cardiomyopathy, often referred to as combined oxidative phosphorylation deficiency-10 (COXPD10). MATERIAL AND METHODS: Thirty five cases of MTO1 deficiency were identified and reviewed through international collaboration. The cases of two female siblings, who presented at 1 and 2years of life with seizures, global developmental delay, hypotonia, elevated lactate and complex I and IV deficiency on muscle biopsy but without cardiomyopathy, are presented in detail. RESULTS: For the description of phenotypic features, the denominator varies as the literature was insufficient to allow for complete ascertainment of all data for the 35 cases. An extensive review of all known MTO1 deficiency cases revealed the most common features at presentation to be lactic acidosis (LA) (21/34; 62% cases) and hypertrophic cardiomyopathy (15/34; 44% cases). Eventually lactic acidosis and hypertrophic cardiomyopathy are described in 35/35 (100%) and 27/34 (79%) of patients with MTO1 deficiency, respectively; with global developmental delay/intellectual disability present in 28/29 (97%), feeding difficulties in 17/35 (49%), failure to thrive in 12/35 (34%), seizures in 12/35 (34%), optic atrophy in 11/21 (52%) and ataxia in 7/34 (21%). There are 19 different pathogenic MTO1 variants identified in these 35 cases: one splice-site, 3 frameshift and 15 missense variants. None have bi-allelic variants that completely inactivate MTO1; however, patients where one variant is truncating (i.e. frameshift) while the second one is a missense appear to have a more severe, even fatal, phenotype. These data suggest that complete loss of MTO1 is not viable. A ketogenic diet may have exerted a favourable effect on seizures in 2/5 patients. CONCLUSION: MTO1 deficiency is lethal in some but not all cases, and a genotype-phenotype relation is suggested. Aside from lactic acidosis and cardiomyopathy, developmental delay and other phenotypic features affecting multiple organ systems are often present in these patients, suggesting a broader spectrum than hitherto reported. The diagnosis should be suspected on clinical features and the presence of markers of mitochondrial dysfunction in body fluids, especially low residual complex I, III and IV activity in muscle. Molecular confirmation is required and targeted genomic testing may be the most efficient approach. Although subjective clinical improvement was observed in a small number of patients on therapies such as ketogenic diet and dichloroacetate, no evidence-based effective therapy exists.


Assuntos
Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Encefalopatia Hepática/genética , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Adolescente , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Feminino , Mutação da Fase de Leitura , Encefalopatia Hepática/diagnóstico por imagem , Encefalopatia Hepática/fisiopatologia , Humanos , Lactente , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/diagnóstico por imagem , Erros Inatos do Metabolismo/fisiopatologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/fisiopatologia , Fosforilação Oxidativa , Proteínas de Ligação a RNA
14.
Eur J Med Genet ; 60(7): 374-379, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414188

RESUMO

INTRODUCTION: We present a child with unexplained splenomegaly to highlight this feature as a presenting sign of the RASopathy CBL syndrome and to draw attention to the power and utility of next generation genomic sequencing for providing rapid diagnosis and critical information to guide care in the pediatric clinical setting. CLINICAL REPORT: A 7-year-old boy presented with unexplained splenomegaly, attention deficit hyperactivity disorder, mild learning difficulties, easy bruising, mild thrombocytopenia, and subtle dysmorphic features. Extensive haematological testing including a bone marrow biopsy showed mild megaloblastoid erythropoiesis and borderline fibrosis. There were no haematological cytogenetic anomalies or other haematological pathology to explain the splenomegaly. Metabolic testing and chromosomal microarray were unremarkable. Trio whole-exome sequencing (WES) identified a pathogenic de novo heterozygous germline CBL variant (c.1111T > C, p.Y371H), previously reported to cause CBL syndrome and implicated in development of juvenile myelomonocytic leukemia (JMML). DISCUSSION: CBL syndrome (more formally known as "Noonan-syndrome-like disorder with or without juvenile myelomonocytic leukemia") has overlapping features to Noonan syndrome with significant variability. CBL syndrome and other RASopathy disorders-including Noonan syndrome, neurofibromatosis 1, and Costello syndrome-are important to recognize as these are associated with a cancer-predisposition. CBL syndrome carries a very high risk for JMML, thus accurate diagnosis is of utmost importance. The diagnosis of CBL syndrome in this patient would not have been possible based on clinical features alone. Through WES, a specific genetic diagnosis was made, allowing for an optimized management and surveillance plan, illustrating the power of genomics in clinical practice.


Assuntos
Mutação em Linhagem Germinativa , Granuloma de Células Gigantes/genética , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-cbl/genética , Esplenomegalia/genética , Criança , Granuloma de Células Gigantes/diagnóstico , Humanos , Masculino , Síndrome de Noonan/diagnóstico , Esplenomegalia/diagnóstico
15.
PLoS Biol ; 15(3): e2001192, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28267757

RESUMO

Student creation of educational materials has the capacity both to enhance learning and to decrease costs. Three successive honors-style classes of undergraduate students in a cancer genetics class worked with a new software system, CuboCube, to create an e-textbook. CuboCube is an open-source learning materials creation system designed to facilitate e-textbook development, with an ultimate goal of improving the social learning experience for students. Equipped with crowdsourcing capabilities, CuboCube provides intuitive tools for nontechnical and technical authors alike to create content together in a structured manner. The process of e-textbook development revealed both strengths and challenges of the approach, which can inform future efforts. Both the CuboCube platform and the Cancer Genetics E-textbook are freely available to the community.


Assuntos
Acesso à Informação , Neoplasias/genética , Aprendizado Social , Software , Estudantes , Livros de Texto como Assunto
16.
Orphanet J Rare Dis ; 12(1): 28, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187749

RESUMO

BACKGROUND: Sialic acid storage diseases are neurodegenerative disorders characterized by accumulation of sialic acid in the lysosome. These disorders are caused by mutations in SLC17A5, the gene encoding sialin, a sialic acid transporter located in the lysosomal membrane. The most common form of sialic acid storage disease is the slowly progressive Salla disease, presenting with hypotonia, ataxia, epilepsy, nystagmus and findings of cerebral and cerebellar atrophy. Hypomyelination and corpus callosum hypoplasia are typical as well. We report a 16 year-old boy with an atypically mild clinical phenotype of sialic acid storage disease characterized by psychomotor retardation and a mixture of spasticity and rigidity but no ataxia, and only weak features of hypomyelination and thinning of corpus callosum on MRI of the brain. RESULTS: The thiobarbituric acid method showed elevated levels of free sialic acid in urine and fibroblasts, indicating sialic acid storage disease. Initial Sanger sequencing of SLC17A5 coding regions did not show any pathogenic variants, although exon 9 could not be sequenced. Whole exome sequencing followed by RNA and genomic DNA analysis identified a homozygous 6040 bp insertion in intron 9 of SLC17A5 corresponding to a long interspersed element-1 retrotransposon (KF425758.1). This insertion adds two splice sites, both resulting in a frameshift which in turn creates a premature stop codon 4 bp into intron 9. CONCLUSIONS: This study describes a novel pathogenic variant in SLC17A5, namely an intronic transposal insertion, in a patient with mild biochemical and clinical phenotypes. The presence of a small fraction of normal transcript may explain the mild phenotype. This case illustrates the importance of including lysosomal sialic acid storage disease in the differential diagnosis of developmental delay with postnatal onset and hypomyelination, as well as intronic regions in the genetic investigation of inborn errors of metabolism.


Assuntos
Íntrons/genética , Transportadores de Ânions Orgânicos/genética , Doença do Armazenamento de Ácido Siálico/genética , Simportadores/genética , Elementos de DNA Transponíveis/genética , Éxons/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Masculino , Ácido N-Acetilneuramínico/metabolismo , Reação em Cadeia da Polimerase , Pele/citologia , Sequenciamento do Exoma/métodos
17.
Nucleic Acids Res ; 44(19): 9315-9330, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27625398

RESUMO

A wide range of diseases course with an unbalance between the consumption of oxygen by tissues and its supply. This situation triggers a transcriptional response, mediated by the hypoxia inducible factors (HIFs), that aims to restore oxygen homeostasis. Little is known about the inter-individual variation in this response and its role in the progression of disease. Herein, we sought to identify common genetic variants mapping to hypoxia response elements (HREs) and characterize their effect on transcription. To this end, we constructed a list of genome-wide HIF-binding regions from publicly available experimental datasets and studied the genetic variability in these regions by targeted re-sequencing of genomic samples from 96 chronic obstructive pulmonary disease and 144 obstructive sleep apnea patients. This study identified 14 frequent variants disrupting potential HREs. The analysis of the genomic regions containing these variants by means of reporter assays revealed that variants rs1009329, rs6593210 and rs150921338 impaired the transcriptional response to hypoxia. Finally, using genome editing we confirmed the functional role of rs6593210 in the transcriptional regulation of EGFR. In summary, we found that inter-individual variability in non-coding regions affect the response to hypoxia and could potentially impact on the progression of pulmonary diseases.


Assuntos
Regulação da Expressão Gênica , Variação Genética , Hipóxia/genética , Doenças Respiratórias/genética , Transcrição Gênica , Regiões não Traduzidas , Linhagem Celular , Análise por Conglomerados , Feminino , Edição de Genes , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes erbB-1 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipóxia/metabolismo , Masculino , Motivos de Nucleotídeos , Fenótipo , Fosfoglicerato Quinase/genética , Polimorfismo Genético , Regiões Promotoras Genéticas , Doenças Respiratórias/metabolismo , Doenças Respiratórias/fisiopatologia , Transcriptoma
18.
Mol Ther Methods Clin Dev ; 3: 16051, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556059

RESUMO

Current gene therapies predominantly use small, strong, and readily available ubiquitous promoters. However, as the field matures, the availability of small, cell-specific promoters would be greatly beneficial. Here we design seven small promoters from the human paired box 6 (PAX6) gene and test them in the adult mouse retina using recombinant adeno-associated virus. We chose the retina due to previous successes in gene therapy for blindness, and the PAX6 gene since it is: well studied; known to be driven by discrete regulatory regions; expressed in therapeutically interesting retinal cell types; and mutated in the vision-loss disorder aniridia, which is in need of improved therapy. At the PAX6 locus, 31 regulatory regions were bioinformatically predicted, and nine regulatory regions were constructed into seven MiniPromoters. Driving Emerald GFP, these MiniPromoters were packaged into recombinant adeno-associated virus, and injected intravitreally into postnatal day 14 mice. Four MiniPromoters drove consistent retinal expression in the adult mouse, driving expression in combinations of cell-types that endogenously express Pax6: ganglion, amacrine, horizontal, and Müller glia. Two PAX6-MiniPromoters drive expression in three of the four cell types that express PAX6 in the adult mouse retina. Combined, they capture all four cell types, making them potential tools for research, and PAX6-gene therapy for aniridia.

19.
Mol Brain ; 9(1): 52, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27164903

RESUMO

BACKGROUND: Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. METHODS: For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. RESULTS: The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. CONCLUSIONS: Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.


Assuntos
Encéfalo/metabolismo , Dependovirus/metabolismo , Olho/metabolismo , Expressão Gênica , Regiões Promotoras Genéticas/genética , Animais , Barreira Hematoencefálica/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Vetores Genéticos/metabolismo , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Recombinação Genética/genética , Células Bipolares da Retina/metabolismo , Transdução Genética
20.
J Cell Sci ; 129(13): 2573-85, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199372

RESUMO

Lymphangiogenesis plays a crucial role during development, in cancer metastasis and in inflammation. Activation of VEGFR-3 (also known as FLT4) by VEGF-C is one of the main drivers of lymphangiogenesis, but the transcriptional events downstream of VEGFR-3 activation are largely unknown. Recently, we identified a wave of immediate early transcription factors that are upregulated in human lymphatic endothelial cells (LECs) within the first 30 to 80 min after VEGFR-3 activation. Expression of these transcription factors must be regulated by additional pre-existing transcription factors that are rapidly activated by VEGFR-3 signaling. Using transcription factor activity analysis, we identified the homeobox transcription factor HOXD10 to be specifically activated at early time points after VEGFR-3 stimulation, and to regulate expression of immediate early transcription factors, including NR4A1. Gain- and loss-of-function studies revealed that HOXD10 is involved in LECs migration and formation of cord-like structures. Furthermore, HOXD10 regulates expression of VE-cadherin, claudin-5 and NOS3 (also known as e-NOS), and promotes lymphatic endothelial permeability. Taken together, these results reveal an important and unanticipated role of HOXD10 in the regulation of VEGFR-3 signaling in lymphatic endothelial cells, and in the control of lymphangiogenesis and permeability.


Assuntos
Proteínas de Homeodomínio/genética , Neoplasias/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fatores de Transcrição/genética , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Linhagem Celular , Permeabilidade da Membrana Celular/genética , Movimento Celular/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Linfangiogênese/genética , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais , Fator C de Crescimento do Endotélio Vascular/biossíntese , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA