Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 62(5): 1259-1267, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35192366

RESUMO

Therapeutic peptides offer potential advantages over small molecules in terms of selectivity, affinity, and their ability to target "undruggable" proteins that are associated with a wide range of pathologies. Despite their importance, current molecular design capabilities that inform medicinal chemistry decisions on peptide programs are limited. More specifically, there are unmet needs for structure-activity relationship (SAR) analysis and visualization of linear, cyclic, and cross-linked peptides containing non-natural motifs, which are widely used in drug discovery. To bridge this gap, we developed PepSeA (Peptide Sequence Alignment and Visualization), an open-source, freely available package of sequence-based tools (https://github.com/Merck/PepSeA). PepSeA enables multiple sequence alignment of non-natural amino acids and enhanced visualization with the hierarchical editing language for macromolecules (HELM). Via stepwise SAR analysis of a ChEMBL peptide data set, we demonstrate the utility of PepSeA to accelerate decision making in lead optimization campaigns in pharmaceutical setting. PepSeA represents an initial attempt to expand cheminformatics capabilities for therapeutic peptides and to enable rapid and more efficient design-make-test cycles.


Assuntos
Peptídeos , Proteínas , Sequência de Aminoácidos , Quimioinformática , Peptídeos/química , Alinhamento de Sequência
2.
Toxicol Sci ; 162(1): 177-188, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106686

RESUMO

Drug-induced liver injury (DILI) is a leading cause of drug attrition during drug development and a common reason for drug withdrawal from the market. The poor predictability of conventional animal-based approaches necessitates the development of alternative testing approaches. A body of evidence associates DILI with the induction of stress-response genes in liver cells. Here, we set out to identify signal transduction pathways predominantly involved in the regulation of gene transcription by DILI drugs. To this end, we employed ATTAGENE's cell-based multiplexed reporter assay, the FACTORIAL transcription factor (TF), that enables quantitative assessment of the activity of multiple stress-responsive TFs in a single well of cells. Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat. Methods 5, 253-260). Using this assay, we assessed TF responses of the human hepatoma cell line HepG2 to a panel of 64 drug candidates, including 23 preclinical DILI and 11 clinical DILI compounds and 30 nonhepatotoxic compounds from a diverse physicochemical property space. We have identified 16 TF families that specifically responded to DILI drugs, including nuclear factor (erythroid-derived 2)-like 2 antioxidant response element, octamer, hypoxia inducible factor 1 alpha, farnesoid-X receptor, TCF/beta-catenin, aryl hydrocarbon receptor, activator protein-1, E2F, early growth response-1, metal-response transcription factor 1, sterol regulatory element-binding protein, paired box protein, peroxisome proliferator-activated receptor, liver X receptor, interferone regulating factor, and P53, and 2 promoters that responded to multiple TFs (cytomegalovirus and direct repeat 3/vitamin D receptor). Some of TFs identified here also have previously defined role in pathogenesis of liver diseases. These data demonstrate the utility of cost-effective, animal-free, TF profiling assay for detecting DILI potential of drug candidates at early stages of drug development.


Assuntos
Alternativas ao Uso de Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Drogas em Investigação/química , Drogas em Investigação/toxicidade , Fatores de Transcrição/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Descoberta de Drogas , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/genética
3.
Bioorg Med Chem Lett ; 27(3): 653-657, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28011216

RESUMO

Drug discovery programs often face challenges to obtain sufficient duration of action of the drug (i.e. seek longer half-lives). If the pharmacodynamic response is driven by free plasma concentration of the drug then extending the plasma drug concentration is a valid approach. Half-life is dependent on the volume of distribution, which in turn can be dependent upon the ionization state of the molecule. Basic compounds tend to have a higher volume of distribution leading to longer half-lives. However, it has been shown that bases may also have higher promiscuity. In this work, we describe an analysis of in vitro pharmacological profiling and toxicology data investigating the role of primary, secondary, and tertiary amines in imparting promiscuity and thus off-target toxicity. Primary amines are found to be less promiscuous in in vitro assays and have improved profiles in in vivo toxicology studies compared to secondary and tertiary amines.


Assuntos
Aminas/química , Aminas/metabolismo , Aminas/farmacocinética , Aminas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Meia-Vida , Células Hep G2 , Humanos , Concentração Inibidora 50 , Ligação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA