Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Methods ; 4(4): 100740, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521059

RESUMO

Intracellular signaling plays essential roles in various cell types. In the central nervous system, signaling cascades are strictly regulated in a spatiotemporally specific manner to govern brain function; for example, presynaptic cyclic adenosine monophosphate (cAMP) can enhance the probability of neurotransmitter release. In the last decade, channelrhodopsin-2 has been engineered for subcellular targeting using localization tags, but optogenetic tools for intracellular signaling are not well developed. Therefore, we engineered a selective presynaptic fusion tag for photoactivated adenylyl cyclase (bPAC-Syn1a) and found its high localization at presynaptic terminals. Furthermore, an all-optical electrophysiological method revealed rapid and robust short-term potentiation by bPAC-Syn1a at brain stem-amygdala synapses in acute brain slices. Additionally, bPAC-Syn1a modulated mouse immobility behavior. These results indicate that bPAC-Syn1a can manipulate presynaptic cAMP signaling in vitro and in vivo. The all-optical manipulation technique developed in this study can help further elucidate the dynamic regulation of various cellular functions.


Assuntos
Adenilil Ciclases , AMP Cíclico , Plasticidade Neuronal , Terminações Pré-Sinápticas , Animais , Masculino , Camundongos , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , AMP Cíclico/metabolismo , Células HEK293 , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Optogenética/métodos , Terminações Pré-Sinápticas/metabolismo , Ratos
2.
Sci Rep ; 13(1): 2245, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755180

RESUMO

CRISPR/Cas-based genome editing has dramatically improved genetic modification technology. In situ electroporation called genome editing via oviductal nucleic acid delivery (GONAD), which eliminates the need for ex vivo embryo handling, is technically the simplest method for gene transfer and can be performed in laboratories without developmental engineering expertise including micromanipulation techniques. However, the use of this method remains challenging in the case of large-fragment knock-in, such as gene expression cassettes. Adeno-associated viruses (AAV) act as donor DNA for homologous recombination in infected cells, including rodent embryos. In this study, we demonstrated simultaneous electroporation of AAV donors and CRISPR/Cas9 components into embryos to create knock-in animals, and successfully generated knock-in rats carrying a gene cassette with a length of 3.0 kb using a small number of animals and in situ electroporation. These findings indicate that this technique is an efficient high-throughput strategy for producing genetically modified rodents and may be applicable to other animal species.


Assuntos
Sistemas CRISPR-Cas , Zigoto , Humanos , Feminino , Ratos , Animais , Zigoto/metabolismo , Edição de Genes/métodos , Tubas Uterinas , Oviductos , Eletroporação/métodos , Técnicas de Introdução de Genes
3.
Nat Commun ; 13(1): 7913, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585411

RESUMO

Feeding behavior is adaptively regulated by external and internal environment, such that feeding is suppressed when animals experience pain, sickness, or fear. While the lateral parabrachial nucleus (lPB) plays key roles in nociception and stress, neuronal pathways involved in feeding suppression induced by fear are not fully explored. Here, we investigate the parasubthalamic nucleus (PSTN), located in the lateral hypothalamus and critically involved in feeding behaviors, as a target of lPB projection neurons. Optogenetic activation of lPB-PSTN terminals in male mice promote avoidance behaviors, aversive learning, and suppressed feeding. Inactivation of the PSTN and lPB-PSTN pathway reduces fear-induced feeding suppression. Activation of PSTN neurons expressing pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide enriched in the PSTN, is sufficient for inducing avoidance behaviors and feeding suppression. Blockade of PACAP receptors impaires aversive learning induced by lPB-PSTN photomanipulation. These findings indicate that lPB-PSTN pathway plays a pivotal role in fear-induced feeding suppression.


Assuntos
Núcleos Parabraquiais , Camundongos , Masculino , Animais , Núcleos Parabraquiais/metabolismo , Medo , Dor , Região Hipotalâmica Lateral/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
5.
Mol Ther Methods Clin Dev ; 25: 448-460, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35615711

RESUMO

GM1-gangliosidosis is a progressive neurodegenerative glycosphingolipidosis resulting from a GLB1 gene mutation causing a deficiency of the lysosomal enzyme ß-galactosidase, which leads to the abnormal accumulation of GM1 ganglioside in the central nervous system. In the most severe early infantile phenotype, excessive ganglioside accumulation results in a rapid decline in neurological and psychomotor functions, and death occurs within 2 years of age. Currently, there is no effective therapy for GM1-gangliosidosis. In this study, we evaluated the therapeutic efficacy of ex vivo gene therapy targeting hematopoietic stem cells using a lentiviral vector to increase enzyme activity, reduce substrate accumulation, and improve astrocytosis and motor function. Transplanting GLB1-transduced hematopoietic stem cells in mice increased ß-galactosidase enzyme activity in the central nervous system and visceral organs. Specifically, this gene therapy significantly decreased GM1 ganglioside levels in the brain, especially in the cerebrum. More important, this gene therapy rectified astrocytosis in the cerebrum and improved motor function deficits. Furthermore, the elevation of serum ß-galactosidase activity in secondary-transplanted mice suggested the ability of transduced hematopoietic stem cells to repopulate long term. These data indicate that ex vivo gene therapy with lentiviral vectors is a promising approach for the treatment of brain deficits in GM1 gangliosidosis.

6.
Mol Genet Metab ; 130(4): 262-273, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32631737

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disease (LSD) caused by a deficiency of the iduronate-2-sulfatase (IDS) that catabolizes glycosaminoglycans (GAGs). Abnormal accumulations of GAGs in somatic cells lead to various manifestations including central nervous system (CNS) disease. Enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT) are the currently available therapy for MPS II, but both therapies fail to improve CNS manifestations. We previously showed that hematopoietic stem cell targeted gene therapy (HSC-GT) with lethal irradiation improved CNS involvement in a murine model of MPS II which lacks the gene coding for IDS. However, the strong preconditioning, with lethal irradiation, would cause a high rate of morbidity and mortality. Therefore, we tested milder preconditioning procedures with either low dose irradiation or low dose irradiation plus an anti c-kit monoclonal antibody (ACK2) to assess CNS effects in mice with MPS II after HSC-GT. Mice from all the HSC-GT groups displayed super-physiological levels of IDS enzyme activity and robust reduction of abnormally accumulated GAGs to the wild type mice levels in peripheral organs. However, only the mice treated with lethal irradiation showed significant cognitive function improvement as well as IDS elevation and GAG reduction in the brain. These results suggest that an efficient engraftment of genetically modified cells for HSC-GT requires strong preconditioning to ameliorate CNS involvement in cases with MPS II.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Terapia de Reposição de Enzimas , Terapia Genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/citologia , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/complicações , Animais , Doenças do Sistema Nervoso Central/enzimologia , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/genética , Modelos Animais de Doenças , Feminino , Glicosaminoglicanos/análise , Iduronato Sulfatase/genética , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 11(1): 859, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103003

RESUMO

Pogo transposable element derived with ZNF domain (POGZ) has been identified as one of the most recurrently de novo mutated genes in patients with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), intellectual disability and White-Sutton syndrome; however, the neurobiological basis behind these disorders remains unknown. Here, we show that POGZ regulates neuronal development and that ASD-related de novo mutations impair neuronal development in the developing mouse brain and induced pluripotent cell lines from an ASD patient. We also develop the first mouse model heterozygous for a de novo POGZ mutation identified in a patient with ASD, and we identify ASD-like abnormalities in the mice. Importantly, social deficits can be treated by compensatory inhibition of elevated cell excitability in the mice. Our results provide insight into how de novo mutations on high-confidence ASD genes lead to impaired mature cortical network function, which underlies the cellular pathogenesis of NDDs, including ASD.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença/genética , Malformações do Desenvolvimento Cortical/genética , Mutação , Fenótipo , Transposases/genética , Adolescente , Animais , Comportamento Animal , Encéfalo/patologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Feminino , Edição de Genes , Técnicas de Silenciamento de Genes , Heterozigoto , Humanos , Deficiência Intelectual , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Transtornos do Neurodesenvolvimento/genética , Neurogênese , Neurônios/metabolismo
8.
J Neurophysiol ; 115(6): 2721-39, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888105

RESUMO

A large majority of neurons in the superficial layer of the dorsal horn projects to the lateral parabrachial nucleus (LPB). LPB neurons then project to the capsular part of the central amygdala (CeA; CeC), a key structure underlying the nociception-emotion link. LPB-CeC synaptic transmission is enhanced in various pain models by using electrical stimulation of putative fibers of LPB origin in brain slices. However, this approach has limitations for examining direct monosynaptic connections devoid of directly stimulating fibers from other structures and local GABAergic neurons. To overcome these limitations, we infected the LPB of rats with an adeno-associated virus vector expressing channelrhodopsin-2 and prepared coronal and horizontal brain slices containing the amygdala. We found that blue light stimulation resulted in monosynaptic excitatory postsynaptic currents (EPSCs), with very small latency fluctuations, followed by a large polysynaptic inhibitory postsynaptic current in CeC neurons, regardless of the firing pattern type. Intraplantar formalin injection at 24 h before slice preparation significantly increased EPSC amplitude in late firing-type CeC neurons. These results indicate that direct monosynaptic glutamatergic inputs from the LPB not only excite CeC neurons but also regulate CeA network signaling through robust feed-forward inhibition, which is under plastic modulation in response to persistent inflammatory pain.


Assuntos
Núcleo Central da Amígdala/fisiopatologia , Neurônios/fisiologia , Dor Nociceptiva/fisiopatologia , Núcleos Parabraquiais/fisiopatologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Núcleo Central da Amígdala/patologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores/fisiologia , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Plasticidade Neuronal/fisiologia , Neurônios/patologia , Dor Nociceptiva/patologia , Núcleos Parabraquiais/patologia , Ratos Wistar , Sinapses/patologia , Técnicas de Cultura de Tecidos
9.
J Neurosci ; 34(7): 2605-17, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523550

RESUMO

ATP production through oxidative phosphorylation in the mitochondria is the most efficient way to provide energy to various energy-consuming activities of the neurons. These processes require a large amount of ATP molecules to be maintained. Of these, synaptic transmission is most energy consuming. Here we report that lactate transported through monocarboxylate transporters (MCTs) at excitatory synapses constitutively supports synaptic transmission, even under conditions in which a sufficient supply of glucose and intracellular ATP are present. We analyzed the effects of MCT inhibition on neuronal activities using whole-cell recordings in brain slices of rats in the nucleus of the solitary tract. MCT inhibitors (α-cyano-4-hydroxycinnamic acid (4-CIN), phloretin, and d-lactate) significantly decreased the amplitude of EPSCs without reducing release probability. Although 4-CIN significantly reduced currents mediated by heterologously expressed AMPA-Rs in oocytes (a novel finding in this study), the IC50 of the inhibitory effect on EPSC in brain slices was ∼3.8 times smaller than that on AMPA-R currents in oocytes. Removal of intracellular ATP significantly potentiated the inhibition of EPSC with 4-CIN in a manner that was counteracted by intracellular lactate addition. In addition, extracellular lactate rescued aglycemic suppression of EPSC, in a manner that was prevented by 4-CIN. Inhibition of MCTs also reduced NMDA-R-mediated EPSCs and, to a lesser extent, the IPSC. The reduction in EPSC amplitude by γ-d-glutamylglycine was enhanced by 4-CIN, suggesting also a decreased quantal content. We conclude that "on-site" astrocyte-neuron lactate transport to presynaptic and postsynaptic elements is necessary for the integrity of excitatory synaptic transmission.


Assuntos
Metabolismo Energético/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Núcleo Solitário/metabolismo , Sinapses/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Xenopus
10.
Mol Biol Cell ; 14(7): 2921-34, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857875

RESUMO

N-methyl-d-aspartate (NMDA) receptors regulate structural plasticity by modulating actin organization within dendritic spines. Herein, we report identification and characterization of p250GAP, a novel GTPase-activating protein for Rho family proteins that interacts with the GluRepsilon2 (NR2B) subunit of NMDA receptors in vivo. The p250GAP mRNA was enriched in brain, with high expression in cortex, corpus striatum, hippocampus, and thalamus. Within neurons, p250GAP was highly concentrated in the postsynaptic density and colocalized with the GluRepsilon2 (NR2B) subunit of NMDA receptors and with postsynaptic density-95. p250GAP promoted GTP hydrolysis of Cdc42 and RhoA in vitro and in vivo. When overexpressed in neuroblastoma cells, p250GAP suppressed the activities of Rho family proteins, which resulted in alteration of neurite outgrowth. Finally, NMDA receptor stimulation led to dephosphorylation and redistribution of p250GAP in hippocampal slices. Together, p250GAP is likely to be involved in NMDA receptor activity-dependent actin reorganization in dendritic spines.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Células Cultivadas , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Camundongos , Dados de Sequência Molecular , Neuritos/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA