Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 340: 199301, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
2.
J Virol ; 97(5): e0034023, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166307

RESUMO

Measles virus (MeV), the causative agent of measles, is an enveloped RNA virus of the family Paramyxoviridae, which remains an important cause of childhood morbidity and mortality. MeV has two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. During viral entry or virus-mediated fusion between infected cells and neighboring susceptible cells, the head domain of the H protein initially binds to its receptors, signaling lymphocytic activation molecule family member 1 (SLAM) and nectin-4, and then the stalk region of the H protein transmits the fusion-triggering signal to the F protein. MeV may persist in the human brain and cause a fatal neurodegenerative disease, subacute sclerosing panencephalitis (SSPE). Recently, we showed, using in vitro cell culture, that cell adhesion molecule (CADM) 1 and CADM2 are host factors that trigger hyperfusogenic mutant F proteins, causing cell-to-cell fusion and the transfer of the MeV genome between neurons. Unlike conventional receptors, CADM1 and CADM2 interact in cis (on the same membrane) with the H protein and then trigger membrane fusion. Here, we show that alanine substitutions in part of the stalk region (positions 171-175) abolish the ability of the H protein to mediate membrane fusion triggered by CADM1 and CADM2, but not by SLAM. The recombinant hyperfusogenic MeV carrying this mutant H protein loses its ability to spread in primary mouse neurons as well as its neurovirulence in experimentally infected suckling hamsters. These results indicate that CADM1 and CADM2 are key molecules for MeV propagation in the brain and its neurovirulence in vivo. IMPORTANCE Measles is an acute febrile illness with skin rash. Despite the availability of highly effective vaccines, measles is still an important cause of childhood morbidity and mortality in many countries. The World Health Organization estimates that more than 120,000 people died from measles worldwide in 2021. Measles virus (MeV), the causative agent of measles, can also cause a fatal progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. There is currently no effective treatment for this disease. In this study, using recombinant MeVs with altered receptor usage patterns, we show that cell adhesion molecule (CADM) 1 and CADM2 are host factors critical for MeV spread in neurons and its neurovirulence. These findings further our understanding of the molecular mechanism of MeV neuropathogenicity.


Assuntos
Sarampo , Doenças Neurodegenerativas , Panencefalite Esclerosante Subaguda , Cricetinae , Humanos , Camundongos , Animais , Vírus do Sarampo/fisiologia , Panencefalite Esclerosante Subaguda/genética , Hemaglutininas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas Recombinantes/metabolismo , Neurônios , Molécula 1 de Adesão Celular/metabolismo
3.
PLoS Pathog ; 17(2): e1008859, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534867

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS.


Assuntos
Antígenos Virais/imunologia , Nucleoproteínas/imunologia , Phlebovirus/imunologia , Febre Grave com Síndrome de Trombocitopenia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Febre Grave com Síndrome de Trombocitopenia/imunologia , Febre Grave com Síndrome de Trombocitopenia/virologia
4.
Sci Rep ; 9(1): 11990, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427690

RESUMO

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by the SFTS phlebovirus (SFTSV). SFTS patients were first reported in China, followed by Japan and South Korea. In 2017, cats were diagnosed with SFTS for the first time, suggesting that these animals are susceptible to SFTSV. To confirm whether or not cats were indeed susceptible to SFTSV, animal subjects were experimentally infected with SFTSV. Four of the six cats infected with the SPL010 strain of SFTSV died, all showing similar or more severe symptoms than human SFTS patients, such as a fever, leukocytopenia, thrombocytopenia, weight loss, anorexia, jaundice and depression. High levels of SFTSV RNA loads were detected in the serum, eye swab, saliva, rectal swab and urine, indicating a risk of direct human infection from SFTS-infected animals. Histopathologically, acute necrotizing lymphadenitis and hemophagocytosis were prominent in the lymph nodes and spleen. Severe hemorrhaging was observed throughout the gastrointestinal tract. B cell lineage cells with MUM-1 and CD20, but not Pax-5 in the lesions were predominantly infected with SFTSV. The present study demonstrated that cats were highly susceptible to SFTSV. The risk of direct infection from SFTS-infected cats to humans should therefore be considered.


Assuntos
Doenças do Gato/virologia , Febres Hemorrágicas Virais/veterinária , Phlebovirus/fisiologia , Animais , Biomarcadores , Biópsia , Doenças do Gato/diagnóstico , Doenças do Gato/mortalidade , Doenças do Gato/transmissão , Gatos , Suscetibilidade a Doenças , Avaliação de Sintomas
5.
Virus Res ; 264: 68-73, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822430

RESUMO

RNA viruses exist as quasispecies containing many variants within their populations because of the error prone nature of viral RNA-dependent RNA polymerases. Quasispecies are not a simple collection of individual variants. Instead, internal interactions among variants provide quasispecies with unique evolvability. An example is 'cooperation' between wild-type and defective measles viruses, in which co-existence of a wild-type and a mutant genome produces a new phenotype. Such internal interactions presuppose efficient co-transmission of multiple genomes to the same cell, which is achieved by polyploid virions of some virus families or by a high multiplicity of infection. Recent studies have revealed that multiple viral genomes can also be transmitted simultaneously ('bloc transmission') by other mechanisms, strengthening the concept of internal interactions among viral quasispecies. Elucidation of the mechanisms of virus evolution, including internal interactions and bloc transmission, may provide rational strategies to solve such important problems of virus infections as drug-resistance, immune evasion, and acquisition of the new tropism and host range.


Assuntos
Evolução Molecular , Variação Genética , Genoma Viral , Vírion/genética , Vírus/genética , Animais , Vírus de DNA/genética , Humanos , Evasão da Resposta Imune , Fenótipo , Quase-Espécies , Vírus de RNA/genética , Viroses/transmissão , Replicação Viral
6.
Trends Microbiol ; 27(2): 164-175, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220445

RESUMO

Measles virus (MeV) may persist in the brain, causing fatal neurodegenerative diseases, subacute sclerosing panencephalitis, and measles inclusion-body encephalitis. However, the mechanism of MeV propagation in the brain remains unexplained because human neurons affected by the diseases do not express the known receptors for MeV. Recent studies have revealed that certain changes in the ectodomain of the MeV fusion (F) protein play a key role in MeV spread in the brain. These changes destabilize the prefusion form of the F protein and render it hyperfusogenic, which in turn allows the virus to propagate in neurons. Based on crystal structures of the F protein, effective fusion inhibitors could be developed to treat these diseases.


Assuntos
Encéfalo/virologia , Vírus do Sarampo/patogenicidade , Sarampo/virologia , Panencefalite Esclerosante Subaguda/virologia , Substituição de Aminoácidos , Animais , Humanos , Sarampo/tratamento farmacológico , Neurônios/virologia , Conformação Proteica , Panencefalite Esclerosante Subaguda/tratamento farmacológico , Proteínas Virais de Fusão/química
7.
Proc Natl Acad Sci U S A ; 115(10): 2496-2501, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463726

RESUMO

Measles virus (MeV), a major cause of childhood morbidity and mortality, is highly immunotropic and one of the most contagious pathogens. MeV may establish, albeit rarely, persistent infection in the central nervous system, causing fatal and intractable neurodegenerative diseases such as subacute sclerosing panencephalitis and measles inclusion body encephalitis. Recent studies have suggested that particular substitutions in the MeV fusion (F) protein are involved in the pathogenesis by destabilizing the F protein and endowing it with hyperfusogenicity. Here we show the crystal structures of the prefusion MeV-F alone and in complex with the small compound AS-48 or a fusion inhibitor peptide. Notably, these independently developed inhibitors bind the same hydrophobic pocket located at the region connecting the head and stalk of MeV-F, where a number of substitutions in MeV isolates from neurodegenerative diseases are also localized. Since these inhibitors could suppress membrane fusion mediated by most of the hyperfusogenic MeV-F mutants, the development of more effective inhibitors based on the structures may be warranted to treat MeV-induced neurodegenerative diseases.


Assuntos
Antivirais , Peptídeos , Proteínas Virais de Fusão , Animais , Antivirais/química , Antivirais/metabolismo , Sítios de Ligação , Células CHO , Chlorocebus aethiops , Cricetulus , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Células Vero , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
8.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298883

RESUMO

Measles virus (MV) usually causes acute infection but in rare cases persists in the brain, resulting in subacute sclerosing panencephalitis (SSPE). Since human neurons, an important target affected in the disease, do not express the known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), how MV infects neurons and spreads between them is unknown. Recent studies have shown that many virus strains isolated from SSPE patients possess substitutions in the extracellular domain of the fusion (F) protein which confer enhanced fusion activity. Hyperfusogenic viruses with such mutations, unlike the wild-type MV, can induce cell-cell fusion even in SLAM- and nectin 4-negative cells and spread efficiently in human primary neurons and the brains of animal models. We show here that a hyperfusogenic mutant MV, IC323-F(T461I)-EGFP (IC323 with a fusion-enhancing T461I substitution in the F protein and expressing enhanced green fluorescent protein), but not the wild-type MV, spreads in differentiated NT2 cells, a widely used human neuron model. Confocal time-lapse imaging revealed the cell-to-cell spread of IC323-F(T461I)-EGFP between NT2 neurons without syncytium formation. The production of virus particles was strongly suppressed in NT2 neurons, also supporting cell-to-cell viral transmission. The spread of IC323-F(T461I)-EGFP was inhibited by a fusion inhibitor peptide as well as by some but not all of the anti-hemagglutinin antibodies which neutralize SLAM- or nectin-4-dependent MV infection, suggesting the presence of a distinct neuronal receptor. Our results indicate that MV spreads in a cell-to-cell manner between human neurons without causing syncytium formation and that the spread is dependent on the hyperfusogenic F protein, the hemagglutinin, and the putative neuronal receptor for MV.IMPORTANCE Measles virus (MV), in rare cases, persists in the human central nervous system (CNS) and causes subacute sclerosing panencephalitis (SSPE) several years after acute infection. This neurological complication is almost always fatal, and there is currently no effective treatment for it. Mechanisms by which MV invades the CNS and causes the disease remain to be elucidated. We have previously shown that fusion-enhancing substitutions in the fusion protein of MVs isolated from SSPE patients contribute to MV spread in neurons. In this study, we demonstrate that MV bearing the hyperfusogenic mutant fusion protein spreads between human neurons in a cell-to-cell manner. Spread of the virus was inhibited by a fusion inhibitor peptide and antibodies against the MV hemagglutinin, indicating that both the hemagglutinin and hyperfusogenic fusion protein play important roles in MV spread between human neurons. The findings help us better understand the disease process of SSPE.


Assuntos
Hemaglutininas Virais/metabolismo , Vírus do Sarampo/metabolismo , Sarampo/transmissão , Neurônios/metabolismo , Panencefalite Esclerosante Subaguda/transmissão , Proteínas Virais de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Hemaglutininas Virais/genética , Humanos , Sarampo/genética , Sarampo/metabolismo , Sarampo/patologia , Vírus do Sarampo/genética , Vírus do Sarampo/patogenicidade , Neurônios/patologia , Neurônios/virologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Panencefalite Esclerosante Subaguda/genética , Panencefalite Esclerosante Subaguda/metabolismo , Panencefalite Esclerosante Subaguda/patologia , Células Vero , Proteínas Virais de Fusão/genética
9.
J Virol ; 89(5): 2710-7, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25520515

RESUMO

UNLABELLED: Subacute sclerosing panencephalitis (SSPE) is caused by persistent measles virus (MV) infection in the central nervous system (CNS). Since human neurons, its main target cells, do not express known MV receptors (signaling lymphocyte activation molecule [SLAM] and nectin 4), it remains to be understood how MV infects and spreads in them. We have recently reported that fusion-enhancing substitutions in the extracellular domain of the MV fusion (F) protein (T461I and S103I/N462S/N465S), which are found in multiple SSPE virus isolates, promote MV spread in human neuroblastoma cell lines and brains of suckling hamsters. In this study, we show that hyperfusogenic viruses with these substitutions also spread efficiently in human primary neuron cultures without inducing syncytia. These substitutions were found to destabilize the prefusion conformation of the F protein trimer, thereby enhancing fusion activity. However, these hyperfusogenic viruses exhibited stronger cytopathology and produced lower titers at later time points in SLAM- or nectin 4-expressing cells compared to the wild-type MV. Although these viruses spread efficiently in the brains of SLAM knock-in mice, they did not in the spleens. Taken together, the results suggest that enhanced fusion activity is beneficial for MV to spread in neuronal cells where no cytopathology occurs, but detrimental to other types of cells due to strong cytopathology. Acquisition of enhanced fusion activity through substitutions in the extracellular domain of the F protein may be crucial for MV's extensive spread in the CNS and development of SSPE. IMPORTANCE: Subacute sclerosing panencephalitis (SSPE) is a fatal disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). Its cause is not well understood, and no effective therapy is currently available. Recently, we have reported that enhanced fusion activity of MV through the mutations in its fusion protein is a major determinant of efficient virus spread in human neuronal cells and brains of suckling hamsters. In this study, we show that those mutations render the conformation of the fusion protein less stable, thereby making it hyperfusogenic. Our results also show that enhanced fusion activity is beneficial for MV to spread in the CNS but detrimental to other types of cells in peripheral tissues, which are strongly damaged by the virus. Our findings provide important insight into the mechanism for the development of SSPE after MV infection.


Assuntos
Vírus do Sarampo/fisiologia , Neurônios/virologia , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Células Cultivadas , Efeito Citopatogênico Viral , Humanos , Vírus do Sarampo/genética , Camundongos Transgênicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Virais de Fusão/genética
10.
J Virol ; 87(5): 2648-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255801

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a fatal degenerative disease caused by persistent measles virus (MV) infection in the central nervous system (CNS). From the genetic study of MV isolates obtained from SSPE patients, it is thought that defects of the matrix (M) protein play a crucial role in MV pathogenicity in the CNS. In this study, we report several notable mutations in the extracellular domain of the MV fusion (F) protein, including those found in multiple SSPE strains. The F proteins with these mutations induced syncytium formation in cells lacking SLAM and nectin 4 (receptors used by wild-type MV), including human neuronal cell lines, when expressed together with the attachment protein hemagglutinin. Moreover, recombinant viruses with these mutations exhibited neurovirulence in suckling hamsters, unlike the parental wild-type MV, and the mortality correlated with their fusion activity. In contrast, the recombinant MV lacking the M protein did not induce syncytia in cells lacking SLAM and nectin 4, although it formed larger syncytia in cells with either of the receptors. Since human neuronal cells are mainly SLAM and nectin 4 negative, fusion-enhancing mutations in the extracellular domain of the F protein may greatly contribute to MV spread via cell-to-cell fusion in the CNS, regardless of defects of the M protein.


Assuntos
Antígenos CD/metabolismo , Encéfalo/virologia , Moléculas de Adesão Celular/metabolismo , Vírus do Sarampo/fisiologia , Neurônios/virologia , Receptores de Superfície Celular/metabolismo , Proteínas Virais de Fusão/metabolismo , Substituição de Aminoácidos , Animais , Antígenos CD/genética , Moléculas de Adesão Celular/genética , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Células Gigantes/virologia , Humanos , Vírus do Sarampo/genética , Proteínas Mutantes/metabolismo , Mutação , Neurônios/metabolismo , Receptores de Superfície Celular/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária , Panencefalite Esclerosante Subaguda/mortalidade , Panencefalite Esclerosante Subaguda/virologia , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética
11.
Nat Commun ; 3: 1235, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23212364

RESUMO

An RNA virus population generally evolves rapidly under selection pressure, because of high error rates of the viral RNA polymerase. Measles virus, an enveloped RNA virus, has a fusion protein mediating fusion of the viral envelope with the cell membrane. Here we observe that a non-fusogenic recombinant measles virus evolves, after passages, into mutant viruses which regain the ability to induce membrane fusion. Unexpectedly, we identify a mutant virus possessing two types of genomes within a single virion: one genome encoding the wild-type fusion protein, the other a mutant version with a single amino-acid substitution. Neither the wild-type nor mutant protein by itself is able to mediate membrane fusion, but both together exhibit enhanced fusion activity through hetero-oligomer formation. Our results reveal a molecular mechanism for the 'cooperation' between different RNA virus genomes, which may have implications in viral evolution and in the evolution of other macromolecules.


Assuntos
Genoma Viral/genética , Vírus de RNA/genética , Animais , Chlorocebus aethiops , Evolução Molecular , Genoma Viral/fisiologia , Vírus do Sarampo/genética , Vírus do Sarampo/fisiologia , Fusão de Membrana/genética , Fusão de Membrana/fisiologia , Fenótipo , Vírus de RNA/fisiologia , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Seleção Genética/genética , Seleção Genética/fisiologia , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/fisiologia , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/fisiologia
12.
Virus Res ; 155(1): 147-55, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20875466

RESUMO

Two infectious agents were isolated from Culex species mosquitoes in Japan and were identified as distinct strains of a new RNA virus by a method for sequence-independent amplification of viral nucleic acids. The virus designated Omono River virus (OMRV) replicated in mosquito cells in which it produced a severe cytopathic effect. Icosahedral virus particles of approximately 40 nm in diameter were detected in the cytoplasm of infected cells. The OMRV genome was observed to consist of a nonsegmented, 7.6-kb double-stranded RNA (dsRNA) and contain two overlapping open reading frames (ORFs), namely ORF1 and ORF2. ORF1 was found to encode a putative dsRNA-binding protein, a major capsid protein, and other putative proteins, which might be generated by co- and/or post-translational processing of the ORF1 polyprotein precursor, and ORF2 was found to encode a putative RNA-dependent RNA polymerase (RdRp), which could be translated as a fusion with the ORF1 product by a -1 ribosomal frameshift. Phylogenetic analysis based on RdRp revealed that OMRV is closely related to penaeid shrimp infectious myonecrosis virus and Drosophila totivirus, which are tentatively assigned to the family Totiviridae. These results indicated that OMRV is a new member of the family of nonsegmented dsRNA viruses infecting arthropod hosts, but not fungal or protozoan hosts.


Assuntos
Culex/virologia , RNA de Cadeia Dupla/genética , RNA Viral/genética , Totiviridae/genética , Totiviridae/isolamento & purificação , Animais , Linhagem Celular , Análise por Conglomerados , Efeito Citopatogênico Viral , Citoplasma/virologia , Japão , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Totiviridae/classificação , Totiviridae/ultraestrutura , Proteínas Virais/genética , Vírion/ultraestrutura
13.
J Vet Med Sci ; 71(12): 1691-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20046044

RESUMO

This is the first report on the cDNA sequences of bat interleukin (IL)-2, IL-4, IL-6, IL-10, IL-12 p40, and tumor necrosis factor (TNF)-alpha. The cDNAs of bat IL-2, IL-4, IL-6, IL-10, IL-12 p40, and TNF-alpha comprise 459, 405, 624, 537, 990, and 699 base pairs respectively. Moreover, each of the cDNAs of bat IL-2, IL-4, IL-6, IL-10, IL-12 p40, and TNF-alpha contain a single open reading frames encoding 152, 134, 207, 178, 329, and 232 amino acids, respectively. The comparison of bat cytokines with Perrissodactyla (horse), Carnivora (dog and cat), and Cetartiodactyla (cattle and pig) orthologs revealed a high degree of homology. Although the N-terminal amino acids and cysteine residues are highly conserved in each mature cytokine, the deduced N-linked glycosylation sites vary across species.


Assuntos
Quirópteros/genética , Quirópteros/metabolismo , Clonagem Molecular , DNA Complementar/genética , Interleucinas/genética , Fator de Necrose Tumoral alfa/genética , Animais , Sequência de Bases , Sequência Conservada , Interleucina-10/genética , Subunidade p40 da Interleucina-12/genética , Interleucina-2/genética , Interleucina-4/genética , Interleucina-6/genética , Interleucinas/metabolismo , Filogenia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA