Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Sci ; 117: 161-167, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29448044

RESUMO

Claudin-2 (CLDN-2), a pore-forming tight junction protein with a tetra-transmembrane domain, is involved in carcinogenesis and the metastasis of some cancers. Although CLDN-2 is highly expressed in the tight junctions of the liver and kidney, whether CLDN-2 is a safe target for cancer therapy remains unknown. We recently generated a rat monoclonal antibody (mAb, clone 1A2) that recognizes the extracellular domains of human and mouse CLDN-2. Here, we investigated the safety of CLDN-2-targeted cancer therapy by using 1A2 as a model therapeutic antibody. Because most human therapeutic mAbs are IgG1 subtype that can induce antibody-dependent cellular cytotoxicity, we generated a human-rat chimeric IgG1 form of 1A2 (xi-1A2). xi-1A2 activated Fcγ receptor IIIa in the presence of CLDN-2-expressing cells, indicating that xi-1A2 likely exerts antibody-dependent cellular cytotoxicity. At 24 h after its intravenous injection, xi-1A2 was distributed into the liver, kidney, and tumor tissues of mice bearing CLDN-2-expressing fibrosarcoma cells. Treatment of the xenografted mice with xi-1A2 attenuated tumor growth without apparent adverse effects, such as changes in body weight and biochemical markers of liver and kidney injury. These results support xi-1A2 as the lead candidate mAb for safe CLDN-2-targeted cancer therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Claudina-2/imunologia , Neoplasias/tratamento farmacológico , Domínios Proteicos/imunologia , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina G/imunologia , Células Jurkat , Rim/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/metabolismo , Ratos , Receptores de IgG/genética , Receptores de IgG/imunologia
2.
J Nat Med ; 72(2): 448-455, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29275476

RESUMO

Lentinula edodes mycelia solid culture extract (MSCE) is used as a medical food ingredient and provides beneficial effects to patients with cancer and chronic type C hepatitis. Low molecular weight lignin (LM-lignin), which is an active component of MSCE, exhibits hepatoprotective, antitumor, antiviral, and immunomodulatory effects. In this study, we investigated the effect of LM-lignin/lignosulfonic acid on intestinal barrier function. Lignosulfonic acid enhanced transepithelial membrane electrical resistance in human intestinal Caco-2 cell monolayers. In Caco-2 cells treated with lignosulfonic acid, expression of claudin-2, which forms high conductive cation pores in tight junctions (TJs), was decreased. Lignosulfonic acid also attenuated the barrier dysfunction that is caused by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. TNF-α- and IFN-γ-induced activation of NF-κB, such as translocation of NF-κB p65 into the nucleus and induction of gene expression, was inhibited by lignosulfonic acid treatment. Furthermore, lignosulfonic acid decreased the TNF-α- and IFN-γ-induced increase in interleukin (IL)-1ß and IL-6 expression in Caco-2 cells. These results suggest that lignosulfonic acid not only enhances TJ barrier function but also restores TJ barrier integrity impaired by inflammatory cytokines. Therefore, lignosulfonic acid may be beneficial for the treatment of inflammation-induced intestinal barrier dysfunction observed in inflammatory bowel disease.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lignina/análogos & derivados , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Lignina/farmacologia , Lignina/uso terapêutico , Transdução de Sinais , Transfecção
3.
J Pharmacol Exp Ther ; 363(3): 444-451, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28928120

RESUMO

Disruption of the gastrointestinal epithelial barrier is a hallmark of chronic inflammatory bowel diseases (IBDs). The transmembrane protein claudin 2 (CLDN2) is a component of epithelial tight junctions (TJs). In the intestines of patients with IBDs, the expression of the pore-forming TJ protein CLDN2 is upregulated. Although CLDN2 is involved in these leaky barriers, whether it can be a target to enhance TJ integrity is unknown because a CLDN2-specific inhibitor has not been developed. Here, we used DNA immunization to generate a monoclonal antibody (mAb) that recognized an extracellular loop of CLDN2. Treatment of epithelial cell monolayers with the mAb increased barrier integrity. In addition, the anti-CLDN2 mAb attenuated the decrease in TJ integrity induced by the proinflammatory cytokine tumor necrosis factor-α (TNF-α), and cotreatment of cells with anti-TNF-α mAb and anti-CLDN2 mAb showed additive attenuating effects. These findings indicate that CLDN2 may be a target for enhancing TJ integrity, and CLDN2 binder may be an enhancer of mucosal barrier integrity and a potential therapeutic option for IBDs.


Assuntos
Claudinas/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Junções Íntimas/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Claudinas/imunologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Pharmacol Exp Ther ; 363(2): 275-283, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28819070

RESUMO

A current bottleneck in the development of central nervous system (CNS) drugs is the lack of drug delivery systems targeting the CNS. The intercellular space between endothelial cells of the blood-brain barrier (BBB) is sealed by complex protein-based structures called tight junctions (TJs). Claudin-5 (CLDN-5), a tetra-transmembrane protein is a key component of the TJ seal that prevents the paracellular diffusion of drugs into the CNS. In the present study, to investigate whether CLDN-5 binders can be used for delivery of drugs to the CNS, we generated monoclonal antibodies (mAbs) specific to the extracellular domains of CLDN-5. In an in vitro model of the BBB, the anti-CLDN-5 mAbs attenuated trans-epithelial/endothelial electrical resistance and enhanced solute permeation. These anti-CLDN-5 mAbs are potential leads for the development of novel drug delivery systems targeting the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Claudina-5/química , Claudina-5/imunologia , Espaço Extracelular/metabolismo , Feminino , Humanos , Masculino , Camundongos , Permeabilidade , Domínios Proteicos , Junções Íntimas/metabolismo
5.
Cell Physiol Biochem ; 41(5): 1924-1934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28391269

RESUMO

BACKGROUND/AIMS: Although proinflammatory cytokine-induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α. METHODS: To confirm the epithelial barrier function of Caco-2 cell monolayers, transepithelial electrical resistance (TER) and paracellular permeability were measured. Production levels and localization of tight junction (TJ) proteins were analyzed by immunoblot and immunofluorescence, respectively. Phosphorylated myosin light chain (pMLC) and MLC kinase (MLCK) mRNA expression levels were determined by immunoblot and quantitative RT-PCR, respectively. RESULTS: Rebeccamycin attenuated the TNF-α-induced reduction in TER and increase in paracellular permeability. Rebeccamycin increased claudin-5 expression, but not claudin-1, -2, -4, occludin or ZO-1 expression, and prevented the TNF-α-induced changes in ZO-1 and occludin localization. Rebeccamycin suppressed the TNF-α-induced increase in MLCK mRNA expression, thus suppressing MLC phosphorylation. The rebeccamycin-mediated reduction in MLCK production and protection of epithelial barrier function were alleviated by Chk1 inhibition. CONCLUSION: Rebeccamycin attenuates TNF-α-induced disruption of intestinal epithelial barrier integrity by inducing claudin-5 expression and suppressing MLCK production via Chk1 activation.


Assuntos
Carbazóis/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/enzimologia , Quinase de Cadeia Leve de Miosina/biossíntese , Fator de Necrose Tumoral alfa/farmacologia , Células CACO-2 , Quinase 1 do Ponto de Checagem/metabolismo , Claudina-5/biossíntese , Ativação Enzimática/efeitos dos fármacos , Humanos , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Junções Íntimas/enzimologia
6.
Pharmacol Res Perspect ; 4(5): e00266, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27713828

RESUMO

Claudin-4 (CLDN-4), a tight-junction protein, is overexpressed in various malignant tumors, including gastric, colorectal, pancreatic, and breast cancers. However, CLDN-4 is also expressed in normal tissues, including the liver, pancreas, kidney, and small intestine. Whether CLDN-4 is an effective and safe target for cancer therapy has been unclear owing to the lack of a binder with both CLDN-4 specificity and cross-reactivity to human and murine cells. In this study, we successfully generated a rat anti-CLDN-4 monoclonal antibody (5D12) that was specific to, and cross-reactive with, human and mouse CLDN-4. 5D12 recognized the second extracellular domain of human CLDN-4 in a conformation-dependent manner. A human-rat chimeric IgG1 of 5D12 (xi-5D12) activated the Fcγ IIIa receptor, indicating the activation of antibody-dependent cellular cytotoxicity in CLDN-4-expressing cells. Moreover, xi-5D12 significantly suppressed tumor growth in mice bearing human colorectal and gastric tumors without apparent adverse effects, such as weight loss or liver and kidney damage. These results suggest that CLDN-4 is a potent target for cancer therapy and that an anti-CLDN-4 antibody is a promising candidate anticancer agent.

7.
Biochem Biophys Res Commun ; 477(1): 91-95, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27286708

RESUMO

Claudin-1 (CLDN-1), an integral transmembrane protein, is an attractive target for drug absorption, prevention of infection, and cancer therapy. Previously, we generated mouse anti-CLDN-1 monoclonal antibodies (mAbs) and found that they enhanced epidermal absorption of a drug and prevented hepatitis C virus infection in human hepatocytes. Here, we investigated anti-tumor activity of a human-mouse chimeric IgG1, xi-3A2, from one of the anti-CLDN-1 mAbs, clone 3A2. Xi-3A2 accumulated in the tumor tissues in mice bearing with human CLDN-1-expressing tumor cells. Xi-3A2 activated Fcγ receptor IIIa-expressing reporter cells in the presence of human CLDN-1-expressing cells, suggesting xi-3A2 has a potential to exhibit antibody-dependent cellular cytotoxicity against CLDN-1 expressing tumor cells. We also constructed a mutant xi-3A2 antibody with Gly, Ser, and Ile substituted with Ala, Asp, and Arg at positions 236, 239, and 332 of the Fc domain. This mutant antibody showed greater activation of Fcγ receptor IIIa and in vivo anti-tumor activity in mice bearing human CLDN-1-expressing tumors than xi-3A2 did. These findings indicate that the G236A/S239D/I332E mutant of xi-3A2 might be a promising lead for tumor therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Claudina-1/imunologia , Modelos Animais de Doenças , Neoplasias/terapia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Quimera , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 11(1): e0145631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26727128

RESUMO

Several stressors are known to influence epithelial tight junction (TJ) integrity, but the association between DNA damage and TJ integrity remains unclear. Here we examined the effects of daunorubicin and rebeccamycin, two anti-tumor chemicals that induce DNA damage, on TJ integrity in human intestinal epithelial cells. Daunorubicin and rebeccamycin dose-dependently enhanced transepithelial electrical resistance (TER) and decreased flux of the 4 kDa FITC-dextran in Caco-2 cell monolayer. Daunorubicin- or rebeccamycin-induced enhancement of the TJ barrier function partly rescued attenuation of the barrier function by the inflammatory cytokines TNF-α and IFN-γ. Daunorubicin and rebeccamycin increased claudin-5 expression and the product was distributed in the actin cytoskeleton fraction, which was enriched with TJ proteins. Caffeine, which is an inhibitor of ataxia telangiectasia mutated protein (ATM) and ataxia telangiectasia mutated and Rad3-related protein (ATR), and the Chk1 inhibitor inhibited the TER increases induced by daunorubicin and rebeccamycin, whereas a Chk2 inhibitor did not. Treatment with Chk1 siRNA also significantly inhibited the TER increases. Induction of claudin-5 expression was inhibited by Chk1 inhibitor and by siRNA treatment. Our results suggest that Chk1 activation by daunorubicin and rebeccamycin induced claudin-5 expression and enhanced TJ barrier function in Caco-2 cell monolayer, which suggests a link between DNA damage and TJ integrity in the human intestine.


Assuntos
Claudina-5/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/fisiologia , Proteínas Quinases/metabolismo , Células CACO-2 , Carbazóis/farmacologia , Quinase 1 do Ponto de Checagem , Daunorrubicina/farmacologia , Ativação Enzimática , Humanos
9.
J Pharmacol Exp Ther ; 354(3): 440-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26139628

RESUMO

Tight junctions (TJs) are complex biochemical structures that seal the intercellular space and prevent the free movement of solutes across epithelial cell sheets. Modulating the TJ seal is a promising option for increasing the transdermal absorption of drugs. Within TJs, the binding of the claudin (CLDN) family of tetratransmembrane proteins through cis- and trans-interactions is an integral part of seal formation. Because epidermal TJs contain CLDN-1 and CLDN-4, a binder for these CLDNs may be a useful modulator of the permeability of the epidermal barrier. Here, we investigated whether m19, which can bind to CLDN-1/-4 (also CLDN-2/-5), modulates the integrity of epidermal TJs and the permeability of cell sheets to solutes. Treatment of normal human epidermal keratinocytes (NHEKs) with the CLDN binder reduced the integrity of TJs. A CLDN-1-specific binder (a monoclonal antibody, clone 7A5) also weakened the TJ seal in NHEKs. Although m19 attenuated the TJ barrier in human intestinal epithelial cells (Caco-2), 7A5 did not. Treatment of NHEKs with 7A5 enhanced permeation of a paracellular permeation marker. These findings indicate that CLDN-1 is a potential target for modulating the permeability of the epidermis, and that our CLDN-1 binder is a promising candidate molecule for development as a dermal absorption enhancer.


Assuntos
Claudina-1/metabolismo , Queratinócitos/metabolismo , Ligação Proteica/fisiologia , Células CACO-2 , Linhagem Celular Tumoral , Claudina-4/metabolismo , Epiderme/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Permeabilidade , Junções Íntimas/metabolismo
10.
Biochem Biophys Res Commun ; 462(1): 52-7, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25935479

RESUMO

Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Lignina/farmacologia , Cogumelos Shiitake/química , Antivirais/isolamento & purificação , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Lignina/química , Lignina/isolamento & purificação , Peso Molecular , Vírion/efeitos dos fármacos , Vírion/fisiologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
11.
Biotechnol Lett ; 37(6): 1177-85, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25700824

RESUMO

Claudins constitute a family of at least 27 proteins with four transmembrane domains, and play a pivotal role in maintaining tight-junctions seals in diverse epithelial tissues. The expression of claudin-4 often changes in intestinal tissues of inflammatory bowel disease and various human cancers. Therefore, claudin-4 is a promising target for treatment of these diseases. In our previous study, we established a reporter cell line to monitor claudin-4 expression on the basis of a functional claudin-4 promoter. Using this cell line, we have performed a cell-based screen of a library containing 2642 biologically active small-molecule compounds to identify modulators of claudin-4 expression. The screen identified 24 potential modulators of the claudin-4 promoter activity. Fourteen of these compounds (12 of them novel) induced endogenous claudin-4 expression. The identified compounds might serve as lead compounds targeting aberrant gene expression in inflammatory bowel disease.


Assuntos
Claudina-4/biossíntese , Técnicas Citológicas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica/efeitos dos fármacos , Ativação Transcricional , Linhagem Celular , Humanos , Regiões Promotoras Genéticas
12.
Eur J Pharm Biopharm ; 89: 232-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25513955

RESUMO

Homoharringtonine (HHT), a natural alkaloid produced by various Cephalotaxus species, has antileukemic activity in acute and chronic myelogenous leukemia. However, HHT can also induce unanticipated effects in the gastrointestinal tract, such as diarrhea and nausea/vomiting, but the mechanism behind these adverse effects has not been clarified. In the present study, we show that HHT affects the epithelial permeability of intestinal Caco-2 cell monolayers. HHT reduced the transepithelial electrical resistance (TER) of Caco-2 cells in a dose- and time-dependent manner. The HHT effect was reversible and no cytotoxicity was observed at the concentrations used. HHT simultaneously increased the paracellular flux of the 4 kDa and 40 kDa FITC-dextrans associated with the TER reduction. Immunoblotting analysis revealed that HHT decreased the protein expression of TJ components such as claudin-3, -5, and -7. However, the transcription levels of these claudins were not repressed by HHT treatment. HHT also disturbed the cellular localization of claudin-1 and -4. These changes coincided with the reduced barrier function. Our findings suggest that HHT enhances the paracellular permeability of Caco-2 cell monolayers by modulating the protein expression and localization of claudin isoforms; these actions might be responsible for the gastrointestinal effects of HHT.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Claudinas/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Harringtoninas/metabolismo , Mucosa Intestinal/metabolismo , Isoformas de Proteínas/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Dextranos/metabolismo , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Mepesuccinato de Omacetaxina , Humanos , Intestinos/fisiologia , Junções Íntimas/metabolismo , Junções Íntimas/fisiologia , Transcrição Gênica/fisiologia
13.
J Pharmacol Exp Ther ; 351(1): 206-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25118216

RESUMO

Most malignant tumors are derived from epithelium, and claudin (CLDN)-3 and CLDN-4 are frequently overexpressed in such tumors. Although antibodies have potential in cancer diagnostics and therapy, development of antibodies against CLDNs has been difficult because the extracellular domains of CLDNs are too small and there is high homology among human, rat, and mouse sequences. Here, we created a monoclonal antibody that recognizes human CLDN-3 and CLDN-4 by immunizing rats with a plasmid vector encoding human CLDN-4. A hybridoma clone that produced a rat monoclonal antibody recognizing both CLDN-3 and -4 (clone 5A5) was obtained from a hybridoma screen by using CLDN-3- and -4-expressing cells; 5A5 did not bind to CLDN-1-, -2-, -5-, -6-, -7-, or -9-expressing cells. Fluorescence-conjugated 5A5 injected into xenograft mice bearing human cancer MKN74 or LoVo cells could visualize the tumor cells. The human-rat chimeric IgG1 monoclonal antibody (xi5A5) activated FcγRIIIa in the presence of CLDN-3- or -4-expressing cells, indicating that xi5A5 may exert antibody-dependent cellular cytotoxicity. Administration of xi5A5 attenuated tumor growth in xenograft mice bearing MKN74 or LoVo cells. These results suggest that 5A5 shows promise in the development of a diagnostic and therapeutic antibody for cancers.


Assuntos
Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Claudina-3/imunologia , Claudina-4/imunologia , Neoplasias Experimentais/terapia , Animais , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/uso terapêutico , Imunoterapia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/diagnóstico , Ratos , Ratos Wistar , Receptores de IgG/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Eur J Pharm Sci ; 52: 132-7, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24231339

RESUMO

We previously found that claudin (CL) is a potent target for cancer therapy using a CL-3 and -4-targeting molecule, namely the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE). Although CL-3 and -4 are expressed in various normal tissues, the safety of this CL-targeting strategy has never been investigated. Here, we evaluated the tissue distribution of C-CPE in mice. Ten minutes after intravenous injection into mice, C-CPE was distributed to the liver and kidney (24.0% and 9.5% of the injected dose, respectively). The hepatic level gradually fell to 3.2% of the injected dose by 3 h post-injection, whereas the renal C-CPE level gradually rose to 46.5% of the injected dose by 6 h post-injection and then decreased. A C-CPE mutant protein lacking the ability to bind CL accumulated in the liver to a much lesser extent (2.0% of the dose at 10 min post-injection) than did C-CPE, but its renal profile was similar to that of C-CPE. To investigate the acute toxicity of CL-targeted toxin, we intravenously administered C-CPE-fused protein synthesis inhibitory factor to mice. The CL-targeted toxin dose-dependently increased the levels of serum biomarkers of liver injury, but not of kidney injury. Histological examination confirmed that injection of CL-targeted toxin injured the liver but not the kidney. These results indicate that potential adverse hepatic effects should be considered in C-CPE-based cancer therapy.


Assuntos
Claudina-3/metabolismo , Claudina-4/metabolismo , Enterotoxinas/química , Enterotoxinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Células Cultivadas , Clostridium perfringens , Enterotoxinas/genética , Feminino , Fibroblastos , Mucosa Intestinal/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fragmentos de Peptídeos/química , Inibidores da Síntese de Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Glândula Tireoide/metabolismo , Distribuição Tecidual
15.
Biol Pharm Bull ; 36(11): 1867-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24189431

RESUMO

In this study, we evaluated a baculoviral display system for analysis of viral entry by using a recombinant adenovirus (Ad) carrying a luciferase gene and budded baculovirus (BV) that displays the adenoviral receptor, coxsackievirus and adenovirus receptor (CAR). CAR-expressing B16 cells (B16-CAR cells) were infected with luciferase-expressing Ad vector in the presence of BV that expressed or lacked CAR (CAR-BV and mock-BV, respectively). Treatment with mock-BV even at doses as high as 5 µg/mL failed to attenuate the luciferase activity of B16-CAR cells. In contrast, treatment with CAR-BV with doses as low as 0.5 µg/mL significantly decreased the luciferase activity of infected cells, which reached 65% reduction at 5 µg/mL. These findings suggest that a receptor-displaying BV system could be used to evaluate viral infection.


Assuntos
Infecções por Adenoviridae/genética , Adenoviridae/genética , Baculoviridae/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Luciferases/metabolismo , Infecções por Adenoviridae/metabolismo , Animais , Linhagem Celular Tumoral , Vetores Genéticos , Luciferases/genética , Camundongos
16.
DNA Cell Biol ; 32(3): 104-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23427894

RESUMO

Previously, we isolated cell lines that display various degrees of transformed phenotypes from a single-cell population of human diploid fibroblasts (RB) containing a large deletion (13q14-22) in one copy of chromosome 13. They included a cell line transfected with SV40 early genes (RBSV), an immortalized cell line (RBI), an anchorage-independent cell line (RBS), and a tumorigenic cell line (RBT). Here, we analyzed gene expression profiles in these cell lines and showed that expression of some fibroblast-specified or mesenchyme-specified genes were downregulated, and those of stem cell-specified genes, including NANOG, were upregulated during malignant progression. When NANOG expression was knocked down with a short hairpin NANOG expression vector (shNANOG vector) in the RBS and RBT cells, the anchorage independency and tumorigenicity were repressed. We next examined various cancer cell lines for NANOG expression and showed that some cancer cell lines expressed a high level of normal and/or variant NANOG proteins. Overexpression of NANOG mRNA in lung adenocarcinoma was also shown by in situ hybridization. All these data indicate the involvement of NANOG in tumorigenesis.


Assuntos
Adenocarcinoma/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Cromossomos Humanos Par 13/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteína Homeobox Nanog , Fenótipo , Regulação para Cima
17.
Yakugaku Zasshi ; 132(10): 1165-70, 2012.
Artigo em Japonês | MEDLINE | ID: mdl-23037702

RESUMO

The products of proto-oncogene play critical roles in the development or maintenance of multicellular societies in animals via strict regulatory systems. When these regulatory systems are disrupted, proto-oncogenes can become oncogenes, and thereby induce cell transformation and carcinogenesis. To understand the molecular basis for development of the regulatory system of proto-oncogenes during evolution, we screened for ancestral proto-oncogenes from the unicellular choanoflagellate Monosiga ovata (M. ovata) by monitoring their transforming ability in mammalian cells; consequently, we isolated a Pak gene ortholog, which encodes a serine/threonine kinase as a 'primitive oncogene'. We also cloned Pak orthologs from fungi and the multicellular sponge Ephydatia fluviatilis, and compared their regulatory features with that of M. ovata Pak (MoPak). MoPak is constitutively active and induces cell transformation in mammalian cells. In contrast, Pak orthologs from multicellular animals are strictly regulated. Analyses of Pak mutants revealed that structural alterations in the auto-inhibitory domain (AID) are responsible for the enhanced kinase activity and the oncogenic activity of MoPak. Furthermore, we show that Rho family GTPases-mediated regulatory system of Pak kinase is conserved throughout the evolution from unicellular to multicellular animals, but the MoPak is more sensitive to the Rho family GTPases-mediated activation than multicellular Pak. These results show that maturation of AID function was required for the development of the strict regulatory system of the Pak proto-oncogene, and support the potential link between the development of the regulatory system of proto-oncogenes and the evolution of multicellularity. Further analysis of oncogenic functions of proto-oncogene orthologs in the unicellular genes would provide some insights into the mechanisms of the destruction of multicellular society in cancer.


Assuntos
Neoplasias/genética , Proto-Oncogenes/fisiologia , Animais , Evolução Biológica , Oncogenes/fisiologia , Quinases Ativadas por p21/genética
18.
Biochem Biophys Res Commun ; 426(4): 454-60, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22960168

RESUMO

Claudin-4, a member of a tetra-transmembrane protein family that comprises 27 members, is a key functional and structural component of the tight junction-seal in mucosal epithelium. Modulation of the claudin-4-barrier for drug absorption is now of research interest. Disruption of the claudin-4-seal occurs during inflammation. Therefore, claudin-4 modulators (repressors and inducers) are promising candidates for drug development. However, claudin-4 modulators have never been fully developed. Here, we attempted to design a screening system for claudin-4 modulators by using a reporter assay. We prepared a plasmid vector coding a claudin-4 promoter-driven luciferase gene and established stable reporter gene-expressing cells. We identified thiabendazole, carotene and curcumin as claudin-4 inducers, and potassium carbonate as a claudin-4 repressor by using the reporter cells. They also increased or decreased, respectively, the integrity of the tight junction-seal in Caco-2 cells. This simple reporter system will be a powerful tool for the development of claudin-4 modulators.


Assuntos
Claudina-4/agonistas , Claudina-4/antagonistas & inibidores , Genes Reporter/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Expressão Gênica/efeitos dos fármacos , Humanos , Luciferases/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/efeitos dos fármacos
19.
Drug Discov Today ; 17(13-14): 727-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22414542

RESUMO

Epithelial cells are pivotal in the separation of the body from the outside environment. Orally administered drugs must pass across epithelial cell sheets, and most pathological organisms invade the body through epithelial cells. Tight junctions (TJs) are sealing complexes between adjacent epithelial cells. Modulation of TJ components is a potent strategy for increasing absorption. Inflammation often causes disruption of the TJ barrier. Molecular imaging technology has enabled elucidation of the dynamics of TJs. Molecular pathological analysis has shown the relationship between TJ components and molecular pathological conditions. In this article, we discuss TJ-targeted drug development over the past 2 years.


Assuntos
Descoberta de Drogas , Células Epiteliais/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/patologia , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Epitélio/efeitos dos fármacos , Epitélio/imunologia , Epitélio/metabolismo , Epitélio/patologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/patologia , Proteínas de Junções Íntimas/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/imunologia , Junções Íntimas/metabolismo , Viroses/tratamento farmacológico , Viroses/metabolismo , Viroses/patologia
20.
Exp Cell Res ; 318(3): 187-95, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22094112

RESUMO

The protein p14ARF is a known tumor suppressor protein controlling cell proliferation and survival, which mainly localizes in nucleoli. However, the regulatory mechanisms that govern its activity or expression remain unclear. Here, we report that a novel proapoptotic nucleolar protein, PANO, modulates the expression and activity of p14ARF in HeLa cells. Overexpression of PANO enhances the stability of p14ARF protein by protecting it from degradation, resulting in an increase in p14ARF expression levels. Overexpression of PANO also induces apoptosis under low serum conditions. This effect is dependent on the nucleolar localization of PANO and inhibited by knocking-down p14ARF. Alternatively, PANO siRNA treated cells exhibit a reduction in p14ARF protein levels. In addition, ectopic expression of PANO suppresses the tumorigenicity of HeLa cells in nude mice. These results indicate that PANO is a new apoptosis-inducing gene by modulating the tumor suppressor protein, p14ARF, and may itself be a new candidate tumor suppressor gene.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/genética , Processamento de Proteína Pós-Traducional/genética , Proteína Supressora de Tumor p14ARF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Interferente Pequeno/farmacologia , Transfecção , Proteína Supressora de Tumor p14ARF/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA