Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 97: 108808, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34186211

RESUMO

Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.


Assuntos
Dieta Ocidental , Ácidos Graxos/sangue , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Óleo de Soja , Esfingolipídeos/metabolismo , Tecido Adiposo , Animais , Peso Corporal , Fezes/microbiologia , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Artigo em Inglês | MEDLINE | ID: mdl-33881979

RESUMO

The genera Catabacter (family 'Catabacteraceae') and Christensenella (family Christensenellaceae) are close relatives within the phylum Firmicutes. Members of these genera are strictly anaerobic, non-spore-forming and short straight rods with diverse phenotypes. Phylogenetic analysis of 16S rRNA genes suggest that Catabacter splits Christensenella into a polyphyletic clade. In an effort to ensure that family/genus names represent monophyletic clades, we performed a whole-genome based analysis of the genomes available for the cultured representatives of these genera: four species of Christensenella and two strains of Catabacter hongkongensis. A concatenated alignment of 135 shared protein sequences of single-copy core genes present in the included strains indicates that C. hongkongensis is indeed nested within the Christensenella clade. Based on their evolutionary relationship, we propose the transfer of Catabacter hongkongensis to the genus Christensenella as Christensenella hongkongensis comb. nov.


Assuntos
Clostridiales/classificação , Genoma Bacteriano , Filogenia , Técnicas de Tipagem Bacteriana , Bacilos Gram-Positivos/classificação
3.
Nat Commun ; 11(1): 2471, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424203

RESUMO

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.


Assuntos
Bacteroides/fisiologia , Ceramidas/metabolismo , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Esfingolipídeos/metabolismo , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Vida Livre de Germes , Humanos , Resistência à Insulina , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Mutação/genética , Serina C-Palmitoiltransferase/deficiência , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
4.
Elife ; 72018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29580380

RESUMO

Over the past century, soybean oil (SBO) consumption in the United States increased dramatically. The main SBO fatty acid, linoleic acid (18:2), inhibits in vitro the growth of lactobacilli, beneficial members of the small intestinal microbiota. Human-associated lactobacilli have declined in prevalence in Western microbiomes, but how dietary changes may have impacted their ecology is unclear. Here, we compared the in vitro and in vivo effects of 18:2 on Lactobacillus reuteri and L. johnsonii. Directed evolution in vitro in both species led to strong 18:2 resistance with mutations in genes for lipid biosynthesis, acid stress, and the cell membrane or wall. Small-intestinal Lactobacillus populations in mice were unaffected by chronic and acute 18:2 exposure, yet harbored both 18:2- sensitive and resistant strains. This work shows that extant small intestinal lactobacilli are protected from toxic dietary components via the gut environment as well as their own capacity to evolve resistance.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Intestino Delgado/microbiologia , Lactobacillus johnsonii/efeitos dos fármacos , Limosilactobacillus reuteri/efeitos dos fármacos , Ácido Linoleico/toxicidade , Óleo de Soja/toxicidade , Animais , Farmacorresistência Bacteriana , Lactobacillus johnsonii/crescimento & desenvolvimento , Limosilactobacillus reuteri/crescimento & desenvolvimento , Camundongos , Mutação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA