Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Gene Ther ; 29(6): 346-356, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35105948

RESUMO

The only treatment tested for growth hormone receptor (GHR) defective Laron Syndrome (LS) is injections of recombinant insulin-like-growth factor 1 (rhIGF1). The response is suboptimal and associated with progressive obesity. In this study, we treated 4-5-week-old Laron dwarf mice (GHR-/-) with an adeno-associated virus expressing murine GHR (AAV-GHR) injection at a dose of 4 × 1010 vector genome per mouse. Serum growth hormone (GH) levels decreased, and GH-responsive IGF1, IGF binding protein 3 (IGFBP3) and acid labile subunit (ALS) increased. There was a significant but limited increase in body weight and length, similar to the response to rhIGF1 treatment in LS patients. All the major organs increased in weight except the brain. Our study is the first to use gene therapy to treat GH-receptor deficiency. We propose that gene therapy with AAV-GHR may eventually be useful for the treatment of human LS.


Assuntos
Hormônio do Crescimento , Síndrome de Laron , Animais , Modelos Animais de Doenças , Terapia Genética , Hormônio do Crescimento/genética , Hormônio do Crescimento/uso terapêutico , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/uso terapêutico , Síndrome de Laron/tratamento farmacológico , Síndrome de Laron/terapia , Camundongos , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Receptores da Somatotropina/uso terapêutico
2.
Hepatology ; 73(2): 759-775, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32342533

RESUMO

BACKGROUND AND AIMS: Growth hormone (GH) is important for liver regeneration after partial hepatectomy (PHx). We investigated this process in C57BL/6 mice that express different forms of the GH receptor (GHR) with deletions in key signaling domains. APPROACH AND RESULTS: PHx was performed on C57BL/6 mice lacking GHR (Ghr-/- ), disabled for all GH-dependent Janus kinase 2 signaling (Box1-/- ), or lacking only GH-dependent signal transducer and activator of transcription 5 (STAT5) signaling (Ghr391-/- ), and wild-type littermates. C57BL/6 Ghr-/- mice showed striking mortality within 48 hours after PHx, whereas Box1-/- or Ghr391-/- mice survived with normal liver regeneration. Ghr-/- mortality was associated with increased apoptosis and elevated natural killer/natural killer T cell and macrophage cell markers. We identified H2-Bl, a key immunotolerance protein, which is up-regulated by PHx through a GH-mediated, Janus kinase 2-independent, SRC family kinase-dependent pathway. GH treatment was confirmed to up-regulate expression of the human homolog of H2-Bl (human leukocyte antigen G [HLA-G]) in primary human hepatocytes and in the serum of GH-deficient patients. We find that injury-associated innate immune attack by natural killer/natural killer T cell and macrophage cells are instrumental in the failure of liver regeneration, and this can be overcome in Ghr-/- mice by adenoviral delivery of H2-Bl or by infusion of HLA-G protein. Further, H2-Bl knockdown in wild-type C57BL/6 mice showed elevated markers of inflammation after PHx, whereas Ghr-/- backcrossed on a strain with high endogenous H2-Bl expression showed a high rate of survival following PHx. CONCLUSIONS: GH induction of H2-Bl expression is crucial for reducing innate immune-mediated apoptosis and promoting survival after PHx in C57BL/6 mice. Treatment with HLA-G may lead to improved clinical outcomes following liver surgery or transplantation.


Assuntos
Hormônio do Crescimento/deficiência , Antígenos H-2/metabolismo , Antígenos HLA-G/metabolismo , Regeneração Hepática/imunologia , Fígado/fisiologia , Animais , Apoptose/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Técnicas de Cocultura , Técnicas de Silenciamento de Genes , Antígenos H-2/genética , Antígenos HLA-G/genética , Antígenos HLA-G/isolamento & purificação , Hepatectomia , Hepatócitos , Humanos , Imunidade Inata , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Fígado/cirurgia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia
5.
Growth Horm IGF Res ; 28: 6-10, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26059750

RESUMO

Once thought to be present only in liver, muscle and adipose tissue, the GH receptor is now known to be ubiquitously distributed, in accord with the many pleiotropic actions of GH. These include the regulation of metabolism, postnatal growth, cognition, immune, cardiac and renal systems and gut function. GH exerts these actions primarily through alterations in gene expression, initiated by activation of its membrane receptor and the resultant activation of the associated JAK2 (Janus kinase 2) and Src family kinases. Receptor activation involves hormone initiated movements within a receptor homodimer, rather than simple receptor dimerization. We have shown that binding of the hormone realigns the orientation of the two receptors both by relative rotation and by closer apposition just above the cell membrane. This is a consequence of the asymmetric placement of the binding sites on the hormone. Binding results in a conversion of parallel receptor transmembrane domains into a rotated crossover orientation, which produces separation of the lower part of the transmembrane helices. Because the JAK2 is bound to the Box1 motif proximal to the inner membrane, receptor activation results in separation of the two associated JAK2s, and in particular the removal of the inhibitory pseudokinase domain from the kinase domain of the other JAK2 (and vice versa). This brings the two kinase domains into position for trans-activation and initiates tyrosine phosphorylation of the receptor cytoplasmic domain and other substrates such as STAT5, the key transcription factor mediating most genomic actions of GH. There are a limited number of genomic actions initiated by the Src kinase family member which also associates with the upper cytoplasmic domain of the receptor, including important immune regulatory actions to dampen exuberant innate immune activation of cells involved in transplant rejection. These findings offer insights for developing specific receptor antagonists which may be valuable in cancer therapy.


Assuntos
Hormônio do Crescimento/metabolismo , Janus Quinase 2/metabolismo , Receptores da Somatotropina/metabolismo , Quinases da Família src/metabolismo , Animais , Humanos , Fator de Transcrição STAT5/metabolismo
6.
Am J Orthop (Belle Mead NJ) ; 44(11): 518-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26566553

RESUMO

Collagenase enzymatic fasciotomy is an accepted nonsurgical treatment for disabling hand contractures caused by Dupuytren disease. We conducted a study to investigate use of collagenase in an immunosuppressed population. We retrospectively reviewed data from 2 academic hand surgical practices. Eight patients on chronic immunosuppressive therapies were treated with collagenase for digital contractures between 2010 and 2011. Thirteen collagenase enzymatic fasciotomies were performed in these 8 patients. Mean preinjection contracture was 53.0°. At mean follow-up of 6.7 months, mean magnitude of contracture improved to 12.9°. Mean metacarpophalangeal joint contracture improved from 42.0° to 4.2°. Mean proximal interphalangeal joint contracture improved from 65.8° to 21.7°. Three of the enzymatic fasciotomies were complicated by skin tears. There were no infections. As more patients seek nonsurgical treatment for Dupuytren disease, its safety and efficacy in select cohorts of patients should continue to be evaluated prospectively.


Assuntos
Colagenases/uso terapêutico , Contratura de Dupuytren/tratamento farmacológico , Fáscia/efeitos dos fármacos , Imunossupressores/uso terapêutico , Idoso , Contratura de Dupuytren/patologia , Fáscia/patologia , Feminino , Humanos , Pneumopatias/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Doenças Reumáticas/tratamento farmacológico , Resultado do Tratamento
7.
Science ; 344(6185): 1249783, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24833397

RESUMO

Signaling from JAK (Janus kinase) protein kinases to STAT (signal transducers and activators of transcription) transcription factors is key to many aspects of biology and medicine, yet the mechanism by which cytokine receptors initiate signaling is enigmatic. We present a complete mechanistic model for activation of receptor-bound JAK2, based on an archetypal cytokine receptor, the growth hormone receptor. For this, we used fluorescence resonance energy transfer to monitor positioning of the JAK2 binding motif in the receptor dimer, substitution of the receptor extracellular domains with Jun zippers to control the position of its transmembrane (TM) helices, atomistic modeling of TM helix movements, and docking of the crystal structures of the JAK2 kinase and its inhibitory pseudokinase domain with an opposing kinase-pseudokinase domain pair. Activation of the receptor dimer induced a separation of its JAK2 binding motifs, driven by a ligand-induced transition from a parallel TM helix pair to a left-handed crossover arrangement. This separation leads to removal of the pseudokinase domain from the kinase domain of the partner JAK2 and pairing of the two kinase domains, facilitating trans-activation. This model may well generalize to other class I cytokine receptors.


Assuntos
Janus Quinase 2/metabolismo , Receptores da Somatotropina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cisteína/química , Ativação Enzimática , Células HEK293 , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores da Somatotropina/química , Receptores da Somatotropina/genética
8.
J Hand Surg Am ; 39(8): 1489-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24814242

RESUMO

We report a case of concomitant fractures of the volar lunate facet of the distal radius and capitate body. Surgical fixation was achieved with open reduction internal fixation using headless compression screws for both fractures. Because of the nature of complications seen after both operative and nonsurgical management, these fractures warrant particular attention.


Assuntos
Capitato/cirurgia , Fixação Interna de Fraturas/instrumentação , Fraturas do Rádio/cirurgia , Traumatismos do Punho/cirurgia , Adulto , Ciclismo/lesões , Parafusos Ósseos , Capitato/lesões , Feminino , Fraturas Ósseas/diagnóstico , Fraturas Ósseas/cirurgia , Humanos , Fraturas do Rádio/diagnóstico , Traumatismos do Punho/diagnóstico
9.
World J Oncol ; 5(5-6): 232-236, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29147410

RESUMO

Pemetrexed is a new-generation antifolate drug, now widely used in patients with non-small cell lung cancer (NSCLC). We report a case of pemetrexed-induced interstitial pneumonitis, and review the literature of eight previously reported cases. As pemetrexed is now a widely used chemotherapeutic agent, it is important to be aware of rare adverse events related to its administration.

10.
PLoS One ; 8(12): e82127, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376517

RESUMO

TMPRSS6 is a regulated gene, with a crucial role in the regulation of iron homeostasis by inhibiting hepcidin expression. The main regulator of iron homeostasis, the antimicrobial peptide hepcidin, which also has a role in immunity, is directly upregulated by inflammation. In this study, we analyzed whether inflammation is also a modulator of TMPRSS6 expression in vitro and in vivo and we determined the mechanism of this regulation A Human Hepatoma cell line was treated with interleukin-6 and mice were injected with lipopolysaccharide and TMPRSS6 expression and the regulatory mechanism were addressed. In this study, we demonstrate that inflammation downregulates TMPRSS6 expression in vitro and in vivo. The downregulation of Tmprss6 by inflammation in mice is not dependent on the Bmp-Smad pathway but occurs through a decrease in Stat5 phosphorylation. Moreover, Stat5 positively regulates Tmprss6 expression directly by binding to a Stat5 element located on the Tmprss6 promoter. Importantly, our results highlight the functional role of inflammatory modulation of TMPRSS6 expression in the regulation of hepcidin. TMPRSS6 inhibition via decreased STAT5 phosphorylation may be an additional mechanism by which inflammation stimulates hepcidin expression to regulate iron homeostasis and immunity.


Assuntos
Inflamação/genética , Proteínas de Membrana/genética , Fator de Transcrição STAT5/metabolismo , Serina Endopeptidases/genética , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Hepcidinas/metabolismo , Humanos , Interleucina-6/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteínas Smad/metabolismo
11.
Cell Rep ; 4(2): 238-47, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850288

RESUMO

Caveolae and caveolin-1 (CAV1) have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1-/- mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1-/- mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1) hepatic lipid homeostasis and (2) nuclear hormone receptor (PPARα, FXRα, and SHP) and bile acid signaling.


Assuntos
Ácidos e Sais Biliares/metabolismo , Caveolina 1/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Animais , Camundongos , Oxirredução , Transdução de Sinais
12.
Endocr Relat Cancer ; 20(3): 273-81, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23404854

RESUMO

The intrinsic properties underlying cancer development are extensively studied while the effect of a cancer on the host is often overlooked. Activation of the Hedgehog (Hh) signaling pathway underlies a number of types of common human cancers, yet little is known concerning endocrine signaling in such tumors. Here, we investigated endocrine signaling in a murine model of basal cell carcinoma (BCC) of the skin, the most common cancer. BCCs were generated by the activation of Hh signaling resulting from the specific deletion of the Ptch1 gene in the developing epidermis. Subsequently, a severe growth deficiency was observed in the murine BCC model, and we identified a deficiency of circulating IGF1 (Igf1). We demonstrate that Hh pathway activation in murine BCC induces IGF binding proteins, thereby regulating Igf1 sequestration into the skin and skewing Igf endocrine signaling. Significantly, these results show that Hh-induced tumors can have endocrine effects on normal tissues that in turn can greatly impact the host. This study not only identifies that Igf is important in Hh-associated skin tumors but also exemplifies the need to consider endocrine signaling when interpreting complex in vivo tumor models.


Assuntos
Carcinoma Basocelular/metabolismo , Proteínas Hedgehog/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Feminino , Integrases/metabolismo , Queratina-14/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/genética , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Timo/metabolismo , Timo/patologia
13.
Proc Natl Acad Sci U S A ; 110(4): E285-94, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23277562

RESUMO

SMG1 is a member of the phosphoinositide kinase-like kinase family of proteins that includes ATM, ATR, and DNA-PK, proteins with known roles in DNA damage and cellular stress responses. SMG1 has a well-characterized role in nonsense-mediated decay as well as suggested roles in the DNA damage response, resistance to oxidative stress, regulation of hypoxic responses, and apoptosis. To understand the roles of SMG1 further, we generated a Genetrap Smg1 mouse model. Smg1 homozygous KO mice were early embryonic lethal, but Smg1 heterozygous mice showed a predisposition to a range of cancers, particularly lung and hematopoietic malignancies, as well as development of chronic inflammation. These mice did not display deficiencies in known roles of SMG1, including nonsense-mediated decay. However, they showed elevated basal tissue and serum cytokine levels, indicating low-level inflammation before the development of tumors. Smg1 heterozygous mice also showed evidence of oxidative damage in tissues. These data suggest that the inflammation observed in Smg1 haploinsufficiency contributes to susceptibility to cancer and that Smg1-deficient animals represent a model of inflammation-enhanced cancer development.


Assuntos
Inflamação/genética , Neoplasias Experimentais/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Animais , Sequência de Bases , DNA Complementar/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Haploinsuficiência , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/etiologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Homozigoto , Inflamação/complicações , Inflamação/enzimologia , Inflamação/patologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia
14.
J Biomed Biotechnol ; 2012: 805683, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22665992

RESUMO

Obesity is a serious health problem with an increased risk of several common diseases including diabetes, cardiovascular disease, and cancer. Metabolomics is an emerging analytical technique for systemic determination of metabolite profiles, which is useful for understanding the biochemical changes in obesity or related diseases both in individual organs and at the organism level. Increasingly, this technology has been applied to the study of obesity, complementing transcriptomics and/or proteomics analyses. Indeed, the alterations of metabolites in biofluids/tissues are direct indicators of variations in physiology or pathology. In this paper, we will examine the obesity-related alterations in significant metabolites that have been identified by metabolomics as well as their metabolic pathway associations. Issues concerning the screening of biologically significant metabolites related to obesity will also be discussed.


Assuntos
Metabolômica , Obesidade/metabolismo , Animais , Pesquisa Biomédica , Humanos
15.
Endocrinology ; 152(12): 4777-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21990310

RESUMO

GH receptor (GHR) mediates the anabolic and metabolic effects of GH. We previously characterized a monoclonal antibody (anti-GHR(ext-mAb)) that reacts with subdomain 2 of the rabbit GHR extracellular domain (ECD) and is a conformation-specific inhibitor of GH signaling in cells bearing rabbit or human GHR. Notably, this antibody has little effect on GH binding and also inhibits inducible metalloproteolysis of the GHR that occurs in the perimembranous ECD stem region. In the current study, we demonstrate that anti-GHR(ext-mAb) inhibits GH-dependent cellular proliferation and also inhibits hepatic GH signaling in vivo in mice that adenovirally express rabbit GHR, as assessed with our noninvasive bioluminescence hepatic signaling assay. A separate monoclonal antibody (anti-GHR(mAb 18.24)) is a sister clone of anti-GHR(ext-mAb). Here, we demonstrate that anti-GHR(mAb 18.24) also inhibits rabbit and human GHR signaling and inducible receptor proteolysis. Further, we use a random PCR-generated mutagenic expression system to map the three-dimensional epitopes in the rabbit GHR ECD for both anti-GHR(ext-mAb) and anti-GHR(mAb 18.24). We find that each of the two antibodies has similar, but nonidentical, discontinuous epitopes that include regions of subdomain 2 encompassing the dimerization interface. These results have fundamental implications for understanding the role of the dimerization interface and subdomain 2 in GHR activation and regulated GHR metalloproteolysis and may inform development of therapeutics that target GHR.


Assuntos
Anticorpos Monoclonais/imunologia , Mapeamento de Epitopos , Receptores da Somatotropina/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Proliferação de Células/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Peptídeo Hidrolases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Coelhos , Receptores da Somatotropina/antagonistas & inibidores , Receptores da Somatotropina/química , Transdução de Sinais/efeitos dos fármacos
16.
Endocrinology ; 152(1): 181-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084450

RESUMO

GH deficiency is known to be clinically associated with a high incidence of nonalcoholic fatty liver disease, and this can be reversed by GH administration. Here we investigated the mechanistic basis for this phenomenon using engineered male mice lacking different signaling elements of the GH receptor, hepatic stat5a/b(-/-) mice and a mouse hepatoma line. We found deficient GH-dependent signal transducer and activator of transcription (STAT)-5 signaling correlates with steatosis, and through microarray analysis, quantitative PCR, and chromatin immunoprecipitation, identified putative targets of STAT5 signaling responsible for the steatosis seen on a normal diet. These targets were verified with liver-specific stat5a/b deletion in vivo, and in vitro we show that dominant-negative (DN) STAT5 increases lipid uptake in a mouse hepatoma line. Because loss of STAT5 signaling results in elevated STAT1 and STAT3 activity and intracellular lipid accumulation, we have used DN-STAT5a/b, DN-STAT1, constitutively active (CA)-STAT3, or addition of oleate/palmitate in the hepatoma line to assign which of these apply to individual targets in STAT5 signaling deficiency. These findings and published mouse models of steatosis enable us to propose elevated cd36, pparγ, and pgc1α/ß expression as primary instigators of the steatosis along with elevated fatty acid synthase, lipoprotein lipase, and very low-density lipoprotein receptor expression. Decreased fgf21 and insig2 expression may also contribute. In conclusion, despite normal plasma free fatty acids and minimal obesity, absent GH activation leads to steatosis because activated STAT5 prevents hepatic steatosis. These results raise the possibility of low-dose GH treatment for nonalcoholic fatty liver disease.


Assuntos
Hormônio do Crescimento/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Fator de Transcrição STAT5/metabolismo , Animais , Linhagem Celular , Fígado Gorduroso , Regulação da Expressão Gênica/fisiologia , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Análise Serial de Proteínas , Receptores da Somatotropina/metabolismo , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT5/genética
17.
Expert Rev Endocrinol Metab ; 6(1): 71-84, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30764037

RESUMO

A substantial body of evidence supports a role for the growth hormone (GH)-IGF-1 axis in cancer incidence and progression. This includes epidemiological evidence relating elevated plasma IGF-1 to cancer incidence as well as a lack of cancers in GH/IGF-1 deficiency. Rodent models lacking GH or its receptor are strikingly resistant to the induction of a wide range of cancers, and treatment with the GH antagonist pegvisomant slows tumor progression. While GH receptor expression is elevated in many cancers, autocrine GH is present in several types, and overexpression of autocrine GH can induce cell transformation. While the mechanism of autocrine action is not clear, it does involve both STAT5 and STAT3 activation, and probably nuclear translocation of the GH receptor. Development of a more potent GH receptor antagonist or secretion inhibitor is warranted for cancer therapy.

18.
Cancer Prev Res (Phila) ; 3(10): 1222-34, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20858761

RESUMO

Basal cell carcinoma (BCC) of the skin is the most common form of cancer, with the majority being caused by mutations in the Patched1 (Ptch1) gene, leading to activation of the Hedgehog (Hh) signaling pathway. Hh signaling is implicated in many tumor types; thus, defining the mechanisms by which Ptch1 regulates tissue proliferation is of paramount importance. Here, we show that the key role of Ptch1 in the skin is to limit the size of the epidermal stem/progenitor compartment and allow hair follicle differentiation. Specifically, loss of Ptch1 leads to the promotion of progenitor cell fate by increasing basal cell proliferation and limiting the progression of basal cells into differentiated hair follicle cell types. Our data indicate that BCCs likely result from hair follicle progenitor cells that, due to Hh signal activation, cannot progress through normal hair follicle differentiation. These data confirm the role of Ptch1 as a negative regulator of epidermal progenitor turnover and also show for the first time that Ptch1 plays a role in the differentiation of the hair follicle lineage. In addition, we show that insulin-like growth factor binding protein 2 (Igfbp2) is upregulated in both murine and human BCCs and that blocking Igfbp2 activity reduces the Hh-mediated expansion of epidermal progenitor cells. We propose that Igfbp2 mediates epidermal progenitor cell expansion and therefore represents an epidermal progenitor cell-specific target of Hh signaling that promotes BCC development.


Assuntos
Carcinoma Basocelular/genética , Transformação Celular Neoplásica/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Receptores de Superfície Celular/genética , Neoplasias Cutâneas/genética , Células-Tronco/metabolismo , Animais , Western Blotting , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Folículo Piloso/patologia , Proteínas Hedgehog/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Knockout , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células-Tronco/patologia , Regulação para Cima
19.
Nat Rev Endocrinol ; 6(9): 515-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20664532

RESUMO

Growth hormone is widely used clinically to promote growth and anabolism and for other purposes. Its actions are mediated via the growth hormone receptor, both directly by tyrosine kinase activation and indirectly by induction of insulin-like growth factor 1 (IGF-1). Insensitivity to growth hormone (Laron syndrome) can result from mutations in the growth hormone receptor and can be treated with IGF-1. This treatment is, however, not fully effective owing to the loss of the direct actions of growth hormone and altered availability of exogenous IGF-1. Excessive activation of the growth hormone receptor by circulating growth hormone results in gigantism and acromegaly, whereas cell transformation and cancer can occur in response to autocrine activation of the receptor. Advances in understanding the mechanism of receptor activation have led to a model in which the growth hormone receptor exists as a constitutive dimer. Binding of the hormone realigns the subunits by rotation and closer apposition, resulting in juxtaposition of the catalytic domains of the associated tyrosine-protein kinase JAK2 below the cell membrane. This change results in activation of JAK2 by transphosphorylation, then phosphorylation of receptor tyrosines in the cytoplasmic domain, which enables binding of adaptor proteins, as well as direct phosphorylation of target proteins. This model is discussed in the light of salient information from closely related class 1 cytokine receptors, such as the erythropoietin, prolactin and thrombopoietin receptors.


Assuntos
Receptores da Somatotropina/agonistas , Receptores da Somatotropina/fisiologia , Animais , Antagonistas de Hormônios/farmacologia , Antagonistas de Hormônios/uso terapêutico , Hormônio do Crescimento Humano/antagonistas & inibidores , Hormônio do Crescimento Humano/metabolismo , Hormônio do Crescimento Humano/fisiologia , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Janus Quinase 2/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutação/fisiologia , Fosforilação , Receptores da Somatotropina/química , Receptores da Somatotropina/genética
20.
Mol Endocrinol ; 24(1): 204-17, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884384

RESUMO

GH is generally believed to signal exclusively through Janus tyrosine kinases (JAK), particularly JAK2, leading to activation of signal transducers and activators of transcription (STAT), ERK and phosphatidylinositol 3-kinase pathways, resulting in transcriptional regulation of target genes. Here we report the creation of targeted knock-in mice wherein the Box1 motif required for JAK2 activation by the GH receptor (GHR) has been disabled by four Pro/Ala mutations. These mice are unable to activate hepatic JAK2, STAT3, STAT5, or Akt in response to GH injection but can activate Src and ERK1/2. Their phenotype is identical to that of the GHR(-/-) mouse, emphasizing the key role of JAK2 in postnatal growth and the minimization of obesity in older males. In particular, they show dysregulation of the IGF-I/IGF-binding protein axis at transcript and protein levels and decreased bone length. Because no gross phenotypic differences were evident between GHR(-/-) and Box1 mutants, we undertook transcript profiling in liver from 4-month-old males. We compared their transcript profiles with our 391-GHR truncated mice, which activate JAK2, ERK1/2, and STAT3 in response to GH but not STAT5a/b. This has allowed us for the first time to identify in vivo Src/ERK-regulated transcripts, JAK2-regulated transcripts, and those regulated by the distal part of the GHR, particularly by STAT5.


Assuntos
Janus Quinase 2/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Transdução de Sinais , Envelhecimento , Animais , Pesos e Medidas Corporais , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Hormônio do Crescimento/farmacologia , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Especificidade de Órgãos , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição STAT/metabolismo , Caracteres Sexuais , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA