Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Thorac Dis ; 15(11): 6301-6316, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38090325

RESUMO

Background: Extracorporeal life support (ECLS) is not routinely used at our center during sequential single-lung transplantation (LTx), but is restricted to anticipate and overcome hemodynamic and respiratory problems occurring peri-operatively. In this retrospective descriptive cohort study, we aim to describe our single-center experience with ECLS in LTx, analyzing ECLS-related complications. Methods: All transplantations with peri-operative ECLS use [2010-2020] were retrospectively analyzed. Multi-organ and heart-lung transplantation were excluded. Demographics, support type and indications are described. Complications are categorized according to the underlying nature and type. Data are presented as median [interquartile range (IQR)]. Kaplan-Meier was used for survival analysis. Results: The overall use of ECLS was 22% (156/703 patients) with a mean age of 52 years (IQR, 36-59 years). Transplant indications in ECLS cohort were interstitial lung disease (38%; n=60), chronic obstructive pulmonary disease (COPD) (19%; n=29), cystic fibrosis (17%; n=26) and others (26%; n=41). Per indication, 94% (15/16) of pulmonary arterial hypertension patients required ECLS, whereas only 8% (29/382) of COPD patients did. In 16% (25/156) of supported patients, veno-venous extracorporeal membrane oxygenation was initiated, while 77% (120/156) required veno-arterial support, and 7% (11/156) cardiopulmonary bypass. Thirty-day mortality was 6% (9/156). Sixteen percent (25/156) of patients were bridged to transplantation on ECLS and 24% (37/156) required post-operative support. Main reasons to use ECLS were intra-operative hemodynamic instability (53%; n=82), ventilation/oxygenation problems (22%; n=34) and reperfusion edema (17%; n=26). Overall incidence of patients with at least one ECLS-related complication was 67% (n=104). Most common complications were hemothorax (25%; n=39), need for continuous renal replacement therapy (19%; n=30), and thromboembolism (14%; n=22). Conclusions: ECLS was required in 22% of LTxs, with a reported ECLS-related complication rate of 67%, of which the most common was hemothorax. Larger databases are needed to further analyze complications and develop tailored deployment strategies for ECLS-use in LTx.

2.
Crit Care ; 27(1): 323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620828

RESUMO

BACKGROUND: Pneumocystis jirovecii pneumonia (PJP) is an opportunistic, life-threatening disease commonly affecting immunocompromised patients. The distribution of predisposing diseases or conditions in critically ill patients admitted to intensive care unit (ICU) and subjected to diagnostic work-up for PJP has seldom been explored. MATERIALS AND METHODS: The primary objective of the study was to describe the characteristics of ICU patients subjected to diagnostic workup for PJP. The secondary objectives were: (i) to assess demographic and clinical variables associated with PJP; (ii) to assess the performance of Pneumocystis PCR on respiratory specimens and serum BDG for the diagnosis of PJP; (iii) to describe 30-day and 90-day mortality in the study population. RESULTS: Overall, 600 patients were included in the study, of whom 115 had presumptive/proven PJP (19.2%). Only 8.8% of ICU patients subjected to diagnostic workup for PJP had HIV infection, whereas hematological malignancy, solid tumor, inflammatory diseases, and solid organ transplants were present in 23.2%, 16.2%, 15.5%, and 10.0% of tested patients, respectively. In multivariable analysis, AIDS (odds ratio [OR] 3.31; 95% confidence interval [CI] 1.13-9.64, p = 0.029), non-Hodgkin lymphoma (OR 3.71; 95% CI 1.23-11.18, p = 0.020), vasculitis (OR 5.95; 95% CI 1.07-33.22, p = 0.042), metastatic solid tumor (OR 4.31; 95% CI 1.76-10.53, p = 0.001), and bilateral ground glass on CT scan (OR 2.19; 95% CI 1.01-4.78, p = 0.048) were associated with PJP, whereas an inverse association was observed for increasing lymphocyte cell count (OR 0.64; 95% CI 0.42-1.00, p = 0.049). For the diagnosis of PJP, higher positive predictive value (PPV) was observed when both respiratory Pneumocystis PCR and serum BDG were positive compared to individual assay positivity (72% for the combination vs. 63% for PCR and 39% for BDG). Cumulative 30-day mortality and 90-day mortality in patients with presumptive/proven PJP were 52% and 67%, respectively. CONCLUSION: PJP in critically ill patients admitted to ICU is nowadays most encountered in non-HIV patients. Serum BDG when used in combination with respiratory Pneumocystis PCR could help improve the certainty of PJP diagnosis.


Assuntos
Infecções por HIV , Pneumonia por Pneumocystis , Humanos , Pneumonia por Pneumocystis/complicações , Pneumonia por Pneumocystis/diagnóstico , Estado Terminal , Unidades de Terapia Intensiva , Cuidados Críticos
3.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505242

RESUMO

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Assuntos
COVID-19 , Humanos , Proteólise , Quimiocina CXCL12/metabolismo , Peptídeo Hidrolases , Pulmão/metabolismo , Receptores CXCR4 , Processamento de Proteína Pós-Traducional
4.
Am J Respir Crit Care Med ; 208(3): 301-311, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37311243

RESUMO

Rationale: Invasive pulmonary aspergillosis has emerged as a frequent coinfection in severe coronavirus disease (COVID-19), similarly to influenza, yet the clinical invasiveness is more debated. Objectives: We investigated the invasive nature of pulmonary aspergillosis in histology specimens of influenza and COVID-19 ICU fatalities in a tertiary care center. Methods: In this monocentric, descriptive, retrospective case series, we included adult ICU patients with PCR-proven influenza/COVID-19 respiratory failure who underwent postmortem examination and/or tracheobronchial biopsy during ICU admission from September 2009 until June 2021. Diagnosis of probable/proven viral-associated pulmonary aspergillosis (VAPA) was made based on the Intensive Care Medicine influenza-associated pulmonary aspergillosis and the European Confederation of Medical Mycology (ECMM) and the International Society for Human and Animal Mycology (ISHAM) COVID-19-associated pulmonary aspergillosis consensus criteria. All respiratory tissues were independently reviewed by two experienced pathologists. Measurements and Main Results: In the 44 patients of the autopsy-verified cohort, 6 proven influenza-associated and 6 proven COVID-19-associated pulmonary aspergillosis diagnoses were identified. Fungal disease was identified as a missed diagnosis upon autopsy in 8% of proven cases (n = 1/12), yet it was most frequently found as confirmation of a probable antemortem diagnosis (n = 11/21, 52%) despite receiving antifungal treatment. Bronchoalveolar lavage galactomannan testing showed the highest sensitivity for VAPA diagnosis. Among both viral entities, an impeded fungal growth was the predominant histologic pattern of pulmonary aspergillosis. Fungal tracheobronchitis was histologically indistinguishable in influenza (n = 3) and COVID-19 (n = 3) cases, yet macroscopically more extensive at bronchoscopy in influenza setting. Conclusions: A proven invasive pulmonary aspergillosis diagnosis was found regularly and with a similar histological pattern in influenza and in COVID-19 ICU case fatalities. Our findings highlight an important need for VAPA awareness, with an emphasis on mycological bronchoscopic work-up.


Assuntos
COVID-19 , Influenza Humana , Aspergilose Pulmonar Invasiva , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autopsia , COVID-19/mortalidade , COVID-19/patologia , Influenza Humana/mortalidade , Influenza Humana/patologia , Unidades de Terapia Intensiva , Aspergilose Pulmonar Invasiva/diagnóstico , Aspergilose Pulmonar Invasiva/mortalidade , Aspergilose Pulmonar Invasiva/patologia , Aspergilose Pulmonar Invasiva/virologia , Estudos Retrospectivos , Mortalidade Hospitalar
5.
Pharm Res ; 40(7): 1723-1734, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37258948

RESUMO

PURPOSE: Colistin is an antibiotic which is increasingly used as a last-resort therapy in critically-ill patients with multidrug resistant Gram-negative infections. The purpose of this study was to evaluate the mechanisms underlying colistin's pharmacokinetic (PK) behavior and to characterize its hepatic metabolism. METHODS: In vitro incubations were performed using colistin sulfate with rat liver microsomes (RLM) and with rat and human hepatocytes (RH and HH) in suspension. The uptake of colistin in RH/HH and thefraction of unbound colistin in HH (fu,hep) was determined. In vitro to in vivo extrapolation (IVIVE) was employed to predict the hepatic clearance (CLh) of colistin. RESULTS: Slow metabolism was detected in RH/HH, with intrinsic clearance (CLint) values of 9.34± 0.50 and 3.25 ± 0.27 mL/min/kg, respectively. Assuming the well-stirred model for hepatic drug elimination, the predicted rat CLh was 3.64± 0.22 mL/min/kg which could explain almost 70% of the reported non-renal in vivo clearance. The predicted human CLh was 91.5 ± 8.83 mL/min, which was within two-fold of the reported plasma clearance in healthy volunteers. When colistin was incubated together with the multidrug resistance-associated protein (MRP/Mrp) inhibitor benzbromarone, the intracellular accumulation of colistin in RH/HH increased significantly. CONCLUSION: These findings indicate the major role of hepatic metabolism in the non-renal clearance of colistin, while MRP/Mrp-mediated efflux is involved in the hepatic disposition of colistin. Our data provide detailed quantitative insights into the hereto unknown mechanisms responsible for non-renal elimination of colistin.


Assuntos
Colistina , Eliminação Hepatobiliar , Humanos , Ratos , Animais , Colistina/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Taxa de Depuração Metabólica
6.
Cardiovasc Res ; 119(2): 520-535, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35998078

RESUMO

AIMS: Severe acute respiratory syndrome coronavirus-2 infection causes COVID-19, which in severe cases evokes life-threatening acute respiratory distress syndrome (ARDS). Transcriptome signatures and the functional relevance of non-vascular cell types (e.g. immune and epithelial cells) in COVID-19 are becoming increasingly evident. However, despite its known contribution to vascular inflammation, recruitment/invasion of immune cells, vascular leakage, and perturbed haemostasis in the lungs of severe COVID-19 patients, an in-depth interrogation of the endothelial cell (EC) compartment in lethal COVID-19 is lacking. Moreover, progressive fibrotic lung disease represents one of the complications of COVID-19 pneumonia and ARDS. Analogous features between idiopathic pulmonary fibrosis (IPF) and COVID-19 suggest partial similarities in their pathophysiology, yet, a head-to-head comparison of pulmonary cell transcriptomes between both conditions has not been implemented to date. METHODS AND RESULTS: We performed single-nucleus RNA-sequencing on frozen lungs from 7 deceased COVID-19 patients, 6 IPF explant lungs, and 12 controls. The vascular fraction, comprising 38 794 nuclei, could be subclustered into 14 distinct EC subtypes. Non-vascular cell types, comprising 137 746 nuclei, were subclustered and used for EC-interactome analyses. Pulmonary ECs of deceased COVID-19 patients showed an enrichment of genes involved in cellular stress, as well as signatures suggestive of dampened immunomodulation and impaired vessel wall integrity. In addition, increased abundance of a population of systemic capillary and venous ECs was identified in COVID-19 and IPF. COVID-19 systemic ECs closely resembled their IPF counterparts, and a set of 30 genes was found congruently enriched in systemic ECs across studies. Receptor-ligand interaction analysis of ECs with non-vascular cell types in the pulmonary micro-environment revealed numerous previously unknown interactions specifically enriched/depleted in COVID-19 and/or IPF. CONCLUSIONS: This study uncovered novel insights into the abundance, expression patterns, and interactomes of EC subtypes in COVID-19 and IPF, relevant for future investigations into the progression and treatment of both lethal conditions.


Assuntos
COVID-19 , Fibrose Pulmonar Idiopática , Síndrome do Desconforto Respiratório , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transcriptoma
7.
Front Immunol ; 13: 861251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275702

RESUMO

COVID-19 is characterised by a broad spectrum of clinical and pathological features. Natural killer (NK) cells play an important role in innate immune responses to viral infections. Here, we analysed the phenotype and activity of NK cells in the blood of COVID-19 patients using flow cytometry, single-cell RNA-sequencing (scRNA-seq), and a cytotoxic killing assay. In the plasma of patients, we quantified the main cytokines and chemokines. Our cohort comprises COVID-19 patients hospitalised in a low-care ward unit (WARD), patients with severe COVID-19 disease symptoms hospitalised in intensive care units (ICU), and post-COVID-19 patients, who were discharged from hospital six weeks earlier. NK cells from hospitalised COVID-19 patients displayed an activated phenotype with substantial differences between WARD and ICU patients and the timing when samples were taken post-onset of symptoms. While NK cells from COVID-19 patients at an early stage of infection showed increased expression of the cytotoxic molecules perforin and granzyme A and B, NK cells from patients at later stages of COVID-19 presented enhanced levels of IFN-γ and TNF-α which were measured ex vivo in the absence of usual in vitro stimulation. These activated NK cells were phenotyped as CD49a+CD69a+CD107a+ cells, and their emergence in patients correlated to the number of neutrophils, and plasma IL-15, a key cytokine in NK cell activation. Despite lower amounts of cytotoxic molecules in NK cells of patients with severe symptoms, majority of COVID-19 patients displayed a normal cytotoxic killing of Raji tumour target cells. In vitro stimulation of patients blood cells by IL-12+IL-18 revealed a defective IFN-γ production in NK cells of ICU patients only, indicative of an exhausted phenotype. ScRNA-seq revealed, predominantly in patients with severe COVID-19 disease symptoms, the emergence of an NK cell subset with a platelet gene signature that we identified by flow and imaging cytometry as aggregates of NK cells with CD42a+CD62P+ activated platelets. Post-COVID-19 patients show slow recovery of NK cell frequencies and phenotype. Our study points to substantial changes in NK cell phenotype during COVID-19 disease and forms a basis to explore the contribution of platelet-NK cell aggregates to antiviral immunity against SARS-CoV-2 and disease pathology.


Assuntos
COVID-19 , Humanos , Granzimas/metabolismo , Perforina/metabolismo , Interleucina-15/metabolismo , Interleucina-18/metabolismo , SARS-CoV-2 , Fator de Necrose Tumoral alfa/metabolismo , Plaquetas/metabolismo , Integrina alfa1/metabolismo , Células Matadoras Naturais , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Antivirais/metabolismo , RNA/metabolismo
8.
Lancet Respir Med ; 10(12): 1147-1159, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029799

RESUMO

BACKGROUND: Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS: In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1ß, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS: Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION: Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING: Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.


Assuntos
Aspergilose , COVID-19 , Influenza Humana , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Humanos , COVID-19/complicações , Influenza Humana/complicações , Influenza Humana/tratamento farmacológico , SARS-CoV-2 , Antifúngicos/uso terapêutico , Estudos Retrospectivos , RNA Viral , Aspergilose Pulmonar/complicações , Pulmão/patologia , Imunidade Inata , Aspergilose Pulmonar Invasiva/complicações
9.
Antibiotics (Basel) ; 11(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35326807

RESUMO

Aspergillus fracture-related infection (FRI) is a rare, but severe complication in trauma surgery. The optimal antifungal treatment for Aspergillus osteomyelitis, including FRI, has not been established yet, as only cases have been documented and data on bone penetration of antifungal drugs are scarce. We describe a patient with Aspergillus fumigatus FRI of the tibia who was treated with isavuconazole after developing liver function disturbances during voriconazole therapy. Isavuconazole, the active moiety formed after hydrolysis of the prodrug isavuconazonium sulfate by plasma esterases, was administered in a maintenance dose of 200 mg q24 h, followed by 150 mg q24 h. The patient completed a six-month antifungal treatment course. Although fracture union was not achieved during six months of follow-up after therapy cessation, no confirmatory signs of FRI were observed. Additionally, two literature searches were conducted to review available data on antifungal treatment of Aspergillus osteomyelitis and bone penetration of antifungals. One hundred and eight cases of Aspergillus osteomyelitis, including six (5.6%) FRI cases, were identified. Voriconazole and (lipid formulations of) amphotericin B were the most commonly used antifungals. In three (2.8%) cases isavuconazole was prescribed as salvage therapy. Data on antifungal bone penetration were reported for itraconazole, voriconazole, amphotericin B, anidulafungin and 5-fluorocytosin. Isavuconazole might be a promising alternative for the treatment of Aspergillus osteomyelitis. However, standardized case documentation is needed to evaluate the efficacy of isavuconazole and other antifungals in the treatment of Aspergillus osteomyelitis, including FRI.

10.
J Clin Microbiol ; 60(4): e0229821, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35321555

RESUMO

Critically ill patients with coronavirus disease 2019 (COVID-19) may develop COVID-19-associated pulmonary aspergillosis (CAPA), which impacts their chances of survival. Whether positive bronchoalveolar lavage fluid (BALF) mycological tests can be used as a survival proxy remains unknown. We conducted a post hoc analysis of a previous multicenter, multinational observational study with the aim of assessing the differential prognostic impact of BALF mycological tests, namely, positive (optical density index of ≥1.0) BALF galactomannan (GM) and positive BALF Aspergillus culture alone or in combination for critically ill patients with COVID-19. Of the 592 critically ill patients with COVID-19 enrolled in the main study, 218 were included in this post hoc analysis, as they had both test results available. CAPA was diagnosed in 56/218 patients (26%). Most cases were probable CAPA (51/56 [91%]) and fewer were proven CAPA (5/56 [9%]). In the final multivariable model adjusted for between-center heterogeneity, an independent association with 90-day mortality was observed for the combination of positive BALF GM and positive BALF Aspergillus culture in comparison with both tests negative (hazard ratio, 2.53; 95% CI confidence interval [CI], 1.28 to 5.02; P = 0.008). The other independent predictors of 90-day mortality were increasing age and active malignant disease. In conclusion, the combination of positive BALF GM and positive BALF Aspergillus culture was associated with increased 90-day mortality in critically ill patients with COVID-19. Additional study is needed to explore the possible prognostic value of other BALF markers.


Assuntos
COVID-19 , Aspergilose Pulmonar Invasiva , Aspergilose Pulmonar , Aspergillus , Líquido da Lavagem Broncoalveolar , COVID-19/complicações , Estado Terminal , Galactose/análogos & derivados , Humanos , Unidades de Terapia Intensiva , Aspergilose Pulmonar Invasiva/complicações , Aspergilose Pulmonar Invasiva/diagnóstico , Mananas , Micologia , Prognóstico , Sensibilidade e Especificidade
11.
Cell ; 184(24): 5932-5949.e15, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34798069

RESUMO

Anosmia, the loss of smell, is a common and often the sole symptom of COVID-19. The onset of the sequence of pathobiological events leading to olfactory dysfunction remains obscure. Here, we have developed a postmortem bedside surgical procedure to harvest endoscopically samples of respiratory and olfactory mucosae and whole olfactory bulbs. Our cohort of 85 cases included COVID-19 patients who died a few days after infection with SARS-CoV-2, enabling us to catch the virus while it was still replicating. We found that sustentacular cells are the major target cell type in the olfactory mucosa. We failed to find evidence for infection of olfactory sensory neurons, and the parenchyma of the olfactory bulb is spared as well. Thus, SARS-CoV-2 does not appear to be a neurotropic virus. We postulate that transient insufficient support from sustentacular cells triggers transient olfactory dysfunction in COVID-19. Olfactory sensory neurons would become affected without getting infected.


Assuntos
Autopsia/métodos , COVID-19/mortalidade , COVID-19/virologia , Bulbo Olfatório/virologia , Mucosa Olfatória/virologia , Mucosa Respiratória/virologia , Idoso , Anosmia , COVID-19/fisiopatologia , Endoscopia/métodos , Feminino , Glucuronosiltransferase/biossíntese , Humanos , Imuno-Histoquímica , Hibridização In Situ , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Transtornos do Olfato , Neurônios Receptores Olfatórios/metabolismo , Sistema Respiratório , SARS-CoV-2 , Olfato
12.
Intensive Care Med ; 47(12): 1462-1471, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34750648

RESUMO

PURPOSE: To evaluate aerobic exercise capacity in 5-year intensive care unit (ICU) survivors and to assess the association between severity of organ failure in ICU and exercise capacity up to 5-year follow-up. METHODS: Secondary analysis of the EPaNIC follow-up cohort (NCT00512122) including 433 patients screened with cardiopulmonary exercise testing (CPET) between 1 and 5 years following ICU admission. Exercise capacity in 5-year ICU survivors (N = 361) was referenced to a historic sedentary population and further compared to demographically matched controls (N = 49). In 5-year ICU survivors performing a maximal CPET (respiratory exchange ratio > 1.05, N = 313), abnormal exercise capacity was defined as peak oxygen consumption (VO2peak) < 85% of predicted peak oxygen consumption (%predVO2peak), based on the historic sedentary population. Exercise liming factors were identified. To study the association between severity of organ failure, quantified as the maximal Sequential Organ Failure Assessment score during ICU-stay (SOFA-max), and exercise capacity as assessed with VO2peak, a linear mixed model was built, adjusting for predefined confounders and including all follow-up CPET studies. RESULTS: Exercise capacity was abnormal in 118/313 (37.7%) 5-year survivors versus 1/48 (2.1%) controls with a maximal CPET, p < 0.001. Aerobic exercise capacity was lower in 5-year survivors than in controls (VO2peak: 24.0 ± 9.7 ml/min/kg versus 31.7 ± 8.4 ml/min/kg, p < 0.001; %predVO2peak: 94% ± 31% versus 123% ± 25%, p < 0.001). Muscular limitation frequently contributed to impaired exercise capacity at 5-year [71/118 (60.2%)]. SOFA-max independently associated with VO2peak throughout follow-up. CONCLUSIONS: Critical illness survivors often display abnormal aerobic exercise capacity, frequently involving muscular limitation. Severity of organ failure throughout the ICU stay independently associates with these impairments.


Assuntos
Estado Terminal , Tolerância ao Exercício , Exercício Físico , Seguimentos , Humanos , Consumo de Oxigênio , Sobreviventes
14.
Lancet Respir Med ; 9(7): 795-802, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34051176

RESUMO

Invasive pulmonary aspergillosis is emerging as a secondary infection in patients with COVID-19, which can present as alveolar disease, airway disease (ie, invasive Aspergillus tracheobronchitis), or both. Histopathology of invasive Aspergillus tracheobronchitis in patients with severe COVID-19 confirms tracheal ulcers with tissue invasion of Aspergillus hyphae but without angioinvasion, which differs from patients with severe influenza, where early angioinvasion is observed. We argue that aggregation of predisposing factors (eg, factors that are defined by the European Organisation for Research and Treatment of Cancer and Mycoses Study Group Education and Research Consortium or genetic polymorphisms), viral factors (eg, tropism and lytic effects), immune defence factors, and effects of concomitant therapies will determine whether and when the angioinvasion threshold is reached. Management of invasive Aspergillus tracheobronchitis should include reducing viral lytic effects, rebalancing immune dysregulation, and systemic and local antifungal therapy. Future study designs should involve approaches that aim to develop improved diagnostics for tissue invasion and airways involvement and identify the immune status of the patient to guide personalised immunotherapy.


Assuntos
Bronquite/microbiologia , COVID-19/complicações , Aspergilose Pulmonar Invasiva/complicações , SARS-CoV-2/fisiologia , Traqueíte/microbiologia , Tropismo Viral , Humanos
15.
Nat Genet ; 53(4): 435-444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33686287

RESUMO

The ongoing COVID-19 pandemic has caused a global economic and health crisis. To identify host factors essential for coronavirus infection, we performed genome-wide functional genetic screens with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human coronavirus 229E. These screens uncovered virus-specific as well as shared host factors, including TMEM41B and PI3K type 3. We discovered that SARS-CoV-2 requires the lysosomal protein TMEM106B to infect human cell lines and primary lung cells. TMEM106B overexpression enhanced SARS-CoV-2 infection as well as pseudovirus infection, suggesting a role in viral entry. Furthermore, single-cell RNA-sequencing of airway cells from patients with COVID-19 demonstrated that TMEM106B expression correlates with SARS-CoV-2 infection. The present study uncovered a collection of coronavirus host factors that may be exploited to develop drugs against SARS-CoV-2 infection or future zoonotic coronavirus outbreaks.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas , Genoma Humano/genética , Estudo de Associação Genômica Ampla/métodos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/epidemiologia , COVID-19/virologia , Linhagem Celular Tumoral , Células Cultivadas , Coronavirus Humano 229E/genética , Epidemias , Células Epiteliais/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Provírus/fisiologia , SARS-CoV-2/fisiologia , Internalização do Vírus
17.
Crit Care Med ; 48(12): e1260-e1268, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048900

RESUMO

OBJECTIVES: Augmented renal clearance might lead to subtherapeutic plasma levels of drugs with predominant renal clearance. Early identification of augmented renal clearance remains challenging for the ICU physician. We developed and validated our augmented renal clearance predictor, a clinical prediction model for augmented renal clearance on the next day during ICU stay, and made it available via an online calculator. We compared its predictive performance with that of two existing models for augmented renal clearance. DESIGN: Multicenter retrospective registry-based cohort study. SETTING: Three Belgian tertiary care academic hospitals. PATIENTS: Adult medical, surgical, and cardiac surgery ICU patients. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Development of the prediction model was based on clinical information available during ICU stay. Out of 33,258 ICU days, we found augmented renal clearance on 19.6% of all ICU days in the development cohort. We retained six clinical variables in our augmented renal clearance predictor: day from ICU admission, age, sex, serum creatinine, trauma, and cardiac surgery. We assessed performance by measuring discrimination, calibration, and net benefit. We externally validated the final model in a single-center population (n = 10,259 ICU days). External validation confirmed good performance with an area under the curve of 0.88 (95% CI 0.87-0.88) and a sensitivity and specificity of 84.1 (95% CI 82.5-85.7) and 76.3 (95% CI 75.4-77.2) at the default threshold probability of 0.2, respectively. CONCLUSIONS: Augmented renal clearance on the next day can be predicted with good performance during ICU stay, using routinely collected clinical information that is readily available at bedside. Our augmented renal clearance predictor is available at www.arcpredictor.com.


Assuntos
Regras de Decisão Clínica , Estado Terminal , Rim/fisiopatologia , Farmacocinética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Creatinina/sangue , Feminino , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Sistema de Registros , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Fatores Sexuais , Adulto Jovem
18.
Acta Clin Belg ; 75(4): 284-292, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31057053

RESUMO

OBJECTIVES: In prosthetic joint infections (PJIs), there is no consensus about the utility of the preoperative joint aspiration culture to guide antimicrobial treatment. The main objective of this retrospective study was to investigate the value of these preoperative samples to narrow immediate postoperative empirical antimicrobial treatment in patients with a knee or hip PJI. METHODS: Adult patients admitted for an exchange procedure between June 2007 and July 2016 for whom a preoperative joint aspiration within 6 months prior to the procedure was available and with an antibiotic-free interval before sampling, were eligible. Per PJI, taking both preoperative joint aspiration and intraoperative deep samples into account, causative pathogen(s) were assessed by the current Infectious Diseases Society of America (IDSA) guidelines. Per PJI, agreement of preoperative joint aspiration cultures corresponding to the causative pathogen(s) was investigated both on species and on Gram/fungi level. RESULTS: From the 85 PJIs, on species level, the total agreement was found in 58 (68%) PJIs. On Gram/fungi level, when preoperative joint aspiration cultures yielded exclusively Gram-positive microorganisms (n = 61), a 100% predictive value for Gram positive causing pathogens was attained. Insufficient predictive value was observed in PJIs with preoperative joint aspiration yielding Gram-negative microorganisms (n = 4), a fungus (n = 1) or with sterile results (n = 19). CONCLUSION: In the immediate postoperative setting, the treating team might consider a broad spectrum empirical antibiotic regime, guided by the local epidemiology and susceptibility, which can be narrowed to Gram-positive coverage if preoperative joint aspiration cultures yield exclusively Gram-positive microorganisms.


Assuntos
Antibacterianos/uso terapêutico , Artrocentese , Técnicas de Cultura , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções Relacionadas à Prótese/terapia , Reoperação , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Feminino , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Positivas/diagnóstico , Prótese de Quadril/efeitos adversos , Humanos , Prótese do Joelho/efeitos adversos , Masculino , Pessoa de Meia-Idade , Micoses/diagnóstico , Micoses/tratamento farmacológico , Cuidados Pré-Operatórios , Infecções Relacionadas à Prótese/diagnóstico
20.
Lancet Respir Med ; 6(10): 782-792, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076119

RESUMO

BACKGROUND: Invasive pulmonary aspergillosis typically occurs in an immunocompromised host. For almost a century, influenza has been known to set up for bacterial superinfections, but recently patients with severe influenza were also reported to develop invasive pulmonary aspergillosis. We aimed to measure the incidence of invasive pulmonary aspergillosis over several seasons in patients with influenza pneumonia in the intensive care unit (ICU) and to assess whether influenza was an independent risk factor for invasive pulmonary aspergillosis. METHODS: We did a retrospective multicentre cohort study. Data were collected from adult patients with severe influenza admitted to seven ICUs across Belgium and The Netherlands during seven influenza seasons. Patients were older than 18 years, were admitted to the ICU for more than 24 h with acute respiratory failure, had pulmonary infiltrates on imaging, and a confirmed influenza infection based on a positive airway PCR test (influenza cohort). We used logistic regression analyses to determine if influenza was independently associated with invasive pulmonary aspergillosis in non-immunocompromised (ie, no European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group [EORTC/MSG] host factor) influenza-positive patients (influenza case group) compared with non-immunocompromised patients with severe community-acquired pneumonia who had a negative airway influenza PCR test (control group). FINDINGS: Data were collected from patients admitted to the ICU between Jan 1, 2009, and June 30, 2016. Invasive pulmonary aspergillosis was diagnosed in 83 (19%) of 432 patients admitted with influenza (influenza cohort), a median of 3 days after admission to the ICU. The incidence was similar for influenza A and B. For patients with influenza who were immunocompromised, incidence of invasive pulmonary aspergillosis was as high as 32% (38 of 117 patients), whereas in the non-immunocompromised influenza case group, incidence was 14% (45 of 315 patients). Conversely, only 16 (5%) of 315 patients in the control group developed invasive pulmonary aspergillosis. The 90-day mortality was 51% in patients in the influenza cohort with invasive pulmonary aspergillosis and 28% in the influenza cohort without invasive pulmonary aspergillosis (p=0·0001). In this study, influenza was found to be independently associated with invasive pulmonary aspergillosis (adjusted odds ratio 5·19; 95% CI 2·63-10·26; p<0·0001), along with a higher APACHE II score, male sex, and use of corticosteroids. INTERPRETATION: Influenza was identified as an independent risk factor for invasive pulmonary aspergillosis and is associated with high mortality. Future studies should assess whether a faster diagnosis or antifungal prophylaxis could improve the outcome of influenza-associated aspergillosis. FUNDING: None.


Assuntos
Aspergillus , Vírus da Influenza A , Vírus da Influenza B , Influenza Humana/epidemiologia , Aspergilose Pulmonar Invasiva/epidemiologia , APACHE , Idoso , Bélgica/epidemiologia , Feminino , Humanos , Incidência , Influenza Humana/microbiologia , Unidades de Terapia Intensiva/estatística & dados numéricos , Aspergilose Pulmonar Invasiva/microbiologia , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Razão de Chances , Admissão do Paciente/estatística & dados numéricos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA