Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunology ; 158(1): 3-18, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31220342

RESUMO

A growing body of data indicates that adipocytokines, including leptin and adiponectin, are critical components not only of metabolic regulation but also of the immune system, mainly by influencing the activity of cells participating in immunological and inflammatory processes. As mast cells (MCs) are the key players in the course of those mechanisms, this study aimed to evaluate the impact of leptin and adiponectin on some aspects of MC activity. We documented that in vivo differentiated mature tissue MCs from the rat peritoneal cavity express a receptor for leptin (OB-R), as well as receptors for adiponectin (AdipoR1 and AdipoR2). We established that leptin, but not adiponectin, stimulates MCs to release of histamine as well as to generation of cysteinyl leukotrienes (cysLTs) and chemokine CCL2. We also found that both adipocytokines affect mRNA expression of various cytokines/chemokines. Leptin and adiponectin also activate MCs to produce reactive oxygen species. Moreover, we documented that leptin significantly augments the surface expression of receptors for cysLTs, i.e. CYSLTR1, CYSLTR2, and GPR17 on MCs, while adiponectin increases only GPR17 expression, and decreases CYSLTR2. Finally, we showed that both adipocytokines serve as potent chemoattractants for MCs. In intracellular signaling in MCs activated by leptin Janus-activated kinase 2, phospholipase C, phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK1/2), and p38 molecules play a part whereas the adiponectin-induced activity of MCs is mediated through PI3K, p38, and ERK1/2 pathways. Our observations that leptin and adiponectin regulate MC activity might indicate that adipocytokines modulate the different processes in which MCs are involved.


Assuntos
Adiponectina/farmacologia , Quimiotaxia/efeitos dos fármacos , Liberação de Histamina/efeitos dos fármacos , Leptina/farmacologia , Mastócitos/metabolismo , Animais , Células Cultivadas , Cisteína/metabolismo , Citocinas/metabolismo , Feminino , Leucotrienos/metabolismo , Mastócitos/imunologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Receptores de Leucotrienos/metabolismo , Transdução de Sinais
2.
Acta Biochim Pol ; 63(1): 59-63, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26885772

RESUMO

Interleukin 18 (IL-18) is a pleiotropic cytokine involved in the regulation of innate and acquired immune response. In the milieu of IL-12 or IL-15, IL-18 is a potent inducer of IFN-gamma in natural killer (NK) cells and CD4 T helper (Th) 1 lymphocytes. However, IL-18 also modulates Th2 and Th17 cell responses, as well as the activity of CD8 cytotoxic cells and neutrophils, in a host microenvironment-dependent manner. It is produced by various hematopoietic and nonhematopoietic cells, including dendritic cells and macrophages. In an organism, bioactivity of the cytokine depends on the intensity of IL-18 production, the level of its natural inhibitory protein - IL-18BP (IL-18 binding protein) and the surface expression of IL-18 receptors (IL-18R) on the responding cells. This review summarizes the biology of the IL-18/IL-18BP/IL-18R system and its role in the host defense against infections. The prospects for IL-18 application in immunotherapeutic or prophylactic interventions in infectious and non-infectious diseases are discussed.


Assuntos
Interleucina-18/fisiologia , Células Matadoras Naturais/imunologia , Células Th1/imunologia , Humanos , Interleucina-18/imunologia
3.
Postepy Hig Med Dosw (Online) ; 69: 1299-312, 2015 Dec 03.
Artigo em Polonês | MEDLINE | ID: mdl-26671921

RESUMO

Immunosuppression is a condition characterized by weakened or inhibited immune response. It occurred both in humoral and cellular response. This is related to the variable levels of deficiency for each antibody class (IgG, IgM, IgA) and a decrease in the number and function of immune cells, mainly T cells which results in the inhibition of cytokine production, signaling transduction and clonal expansion. Immunosuppressive therapy is used in many fields of medicine, such as transplantology, oncology, autoimmune disorders. Immunosuppression can be induced in several ways, by the surgical resection of the organs of the immune system, physical methods using X-rays or chemical methods using pharmacological agents. The most common way to induce immunosuppression is the administration of immunosuppressive drugs, amongst others: glucocorticoids, cytostatic drugs, immunophilin-binding agents, monoclonal antibodies. Unfortunately, the desired therapeutic effects of immunosuppression may be accompanied by a number of side effects associated with both impaired immunity (susceptibility to infections, including those caused by opportunistic microorganisms), toxic effects on the tissues (nephrotoxicity, neurotoxicity), or with a direct impact on the processes of malignancy. This harmful influence can be limited by the modification of the existing drugs, looking for new ones or developing new methods for the controlled kinetics of releasing the immunosuppressive pharmaceuticals. The personalization of immunosuppressant treatment according to genetic/genomic characteristics of individual patient represents the quite innovative look into the issue of immunosuppression.


Assuntos
Terapia de Imunossupressão/métodos , Doenças Autoimunes/terapia , Humanos , Terapia de Imunossupressão/efeitos adversos , Imunossupressores/uso terapêutico , Neoplasias/terapia , Medicina de Precisão , Transplante , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA