Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354232

RESUMO

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Conformação Molecular , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Protein Expr Purif ; 218: 106446, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395209

RESUMO

The small GTPase Rat sarcoma virus proteins (RAS) are key regulators of cell growth and involved in 20-30% of cancers. RAS switches between its active state and inactive state via exchange of GTP (active) and GDP (inactive). Therefore, to study active protein, it needs to undergo nucleotide exchange to a non-hydrolysable GTP analog. Calf intestine alkaline phosphatase bound to agarose beads (CIP-agarose) is regularly used in a nucleotide exchange protocol to replace GDP with a non-hydrolysable analog. Due to pandemic supply problems and product shortages, we found the need for an alternative to this commercially available product. Here we describe how we generated a bacterial alkaline phosphatase (BAP) with an affinity tag bound to an agarose bead. This BAP completely exchanges the nucleotide in our samples, thereby demonstrating an alternative to the commercially available product using generally available laboratory equipment.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nucleotídeos , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Sefarose , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/metabolismo
3.
Cancer Res ; 83(19): 3176-3183, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37556505

RESUMO

RAS proteins are GTPases that regulate a wide range of cellular processes. RAS activity is dependent on its nucleotide-binding status, which is modulated by guanine nucleotide exchange factors (GEF) and GTPase-activating proteins (GAP). KRAS can be acetylated at lysine 104 (K104), and an acetylation-mimetic mutation of K104 to glutamine (K104Q) attenuates the in vitro-transforming capacity of oncogenic KRAS by interrupting GEF-induced nucleotide exchange. To assess the effect of this mutation in vivo, we used CRISPR-Cas9 to generate mouse models carrying the K104Q point mutation in wild-type and conditional KrasLSL-G12D alleles. Homozygous animals for K104Q were viable, fertile, and arose at the expected Mendelian frequency, indicating that K104Q is not a complete loss-of-function mutation. Consistent with our previous findings from in vitro studies, however, the oncogenic activity of KRASG12D was significantly attenuated by mutation at K104. Biochemical and structural analysis indicated that the G12D and K104Q mutations cooperate to suppress GEF-mediated nucleotide exchange, explaining the preferential effect of K104Q on oncogenic KRAS. Furthermore, K104 functioned in an allosteric network with M72, R73, and G75 on the α2 helix of the switch-II region. Intriguingly, point mutation of glycine 75 to alanine (G75A) also showed a strong negative regulatory effect on KRASG12D. These data demonstrate that lysine at position 104 is critical for the full oncogenic activity of mutant KRAS and suggest that modulating the sites in its allosteric network may provide a unique therapeutic approach in cancers expressing mutant KRAS. SIGNIFICANCE: An allosteric network formed by interaction between lysine 104 and residues in the switch-II domain is required for KRAS oncogenicity, which could be exploited for developing inhibitors of the activated oncoprotein.


Assuntos
Lisina , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Regulação Alostérica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lisina/metabolismo , Mutação , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo
4.
Comput Biol Chem ; 104: 107835, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36893567

RESUMO

Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.


Assuntos
Proteínas Ativadoras de GTPase , Simulação de Dinâmica Molecular , Hidrólise , Guanosina Trifosfato/química , Catálise , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Arginina/química
5.
J Vis Exp ; (155)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-32009649

RESUMO

Protein prenylation is a key modification that is responsible for targeting proteins to intracellular membranes. KRAS4b, which is mutated in 22% of human cancers, is processed by farnesylation and carboxymethylation due to the presence of a 'CAAX' box motif at the C-terminus. An engineered baculovirus system was used to express farnesylated and carboxymethylated KRAS4b in insect cells and has been described previously. Here, we describe the detailed, practical purification and biochemical characterization of the protein. Specifically, affinity and ion exchange chromatography were used to purify the protein to homogeneity. Intact and native mass spectrometry was used to validate the correct modification of KRAS4b and to verify nucleotide binding. Finally, membrane association of farnesylated and carboxymethylated KRAS4b to liposomes was measured using surface plasmon resonance spectroscopy.


Assuntos
Prenilação de Proteína , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Baculoviridae , Linhagem Celular , Cromatografia por Troca Iônica , Lipossomos , Espectrometria de Massas , Metilação , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície
6.
J Biol Chem ; 295(4): 1105-1119, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31836666

RESUMO

Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.


Assuntos
Neurofibromina 1/química , Neurofibromina 1/metabolismo , Multimerização Proteica , Células HEK293 , Humanos , Neurofibromina 1/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade , Proteínas Ativadoras de ras GTPase/metabolismo
7.
Sci Rep ; 9(1): 10512, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324887

RESUMO

Although post-translational modification of the C-terminus of RAS has been studied extensively, little is known about N-terminal processing. Mass spectrometric characterization of KRAS expressed in mammalian cells showed cleavage of the initiator methionine (iMet) and N-acetylation of the nascent N-terminus. Interestingly, structural studies on GDP- and GMPPNP-bound KRAS lacking the iMet and N-acetylation resulted in Mg2+-free structures of KRAS with flexible N-termini. In the Mg2+-free KRAS-GDP structure, the flexible N-terminus causes conformational changes in the interswitch region resulting in a fully open conformation of switch I. In the Mg2+-free KRAS-GMPPNP structure, the flexible N-terminus causes conformational changes around residue A59 resulting in the loss of Mg2+ and switch I in the inactive state 1 conformation. Structural studies on N-acetylated KRAS-GDP lacking the iMet revealed the presence of Mg2+ and a conformation of switch regions also observed in the structure of GDP-bound unprocessed KRAS with the iMet. In the absence of the iMet, the N-acetyl group interacts with the central beta-sheet and stabilizes the N-terminus and the switch regions. These results suggest there is crosstalk between the N-terminus and the Mg2+ binding site, and that N-acetylation plays an important role by stabilizing the N-terminus of RAS upon excision of the iMet.


Assuntos
Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/química , Acetilação , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Guanosina Difosfato/metabolismo , Guanilil Imidodifosfato/metabolismo , Humanos , Ligação de Hidrogênio , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
Clin Cancer Res ; 22(24): 6129-6141, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27342399

RESUMO

PURPOSE: To successfully metastasize, tumor cells must respond appropriately to biological stressors encountered during metastatic progression. We sought to test the hypothesis that enhanced efficiency of mRNA translation during periods of metastatic stress is required for metastatic competence of osteosarcoma and that this metastasis-specific adaptation is amenable to therapeutic intervention. EXPERIMENTAL DESIGN: We employ novel reporter and proteomic systems that enable tracking of mRNA translation efficiency and output in metastatic osteosarcoma cells as they colonize the lungs. We test the potential to target mRNA translation as an antimetastatic therapeutic strategy through pharmacokinetic studies and preclinical assessment of the prototypic mTOR inhibitor, rapamycin, across multiple models of metastasis. RESULTS: Metastatic osteosarcoma cells translate mRNA more efficiently than nonmetastatic cells during critical stressful periods of metastatic colonization of the lung. Rapamycin inhibits translational output during periods of metastatic stress, mitigates lung colonization, and prolongs survival. mTOR-inhibiting exposures of rapamycin are achievable in mice using treatment schedules that correspond to human doses well below the MTDs defined in human patients, and as such are very likely to be tolerated over long exposures alone and in combination with other agents. CONCLUSIONS: Metastatic competence of osteosarcoma cells is dependent on efficient mRNA translation during stressful periods of metastatic progression, and the mTOR inhibitor, rapamycin, can mitigate this translation and inhibit metastasis in vivo Our data suggest that mTOR pathway inhibitors should be reconsidered in the clinic using rationally designed dosing schedules and clinical metrics related to metastatic progression. Clin Cancer Res; 22(24); 6129-41. ©2016 AACR.


Assuntos
Osteossarcoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos SCID , Osteossarcoma/metabolismo , Fenótipo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Methods Mol Biol ; 1002: 61-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23625394

RESUMO

The analysis of the cerebrospinal fluid (CSF) proteome in recent years has resulted in a valuable repository of data for targeting and diagnosing a variety of diseases, such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and amyotrophic lateral sclerosis. Human ventricular CSF contains numerous proteins that are unique to CSF due in part to the interaction of the biofluid with the brain. This allows researchers to obtain information from a region that would otherwise be inaccessible except through invasive surgery or during autopsy. Characterization of the CSF proteome requires that strict care be taken so that sample integrity and fidelity are maintained to ensure data reproducibility. Standardized methods in sample collection, storage, preparation, analysis, and data mining must be used for meaningful information to be obtained. The following method describes a simple and robust approach for preparing CSF samples for analysis via reversed-phase liquid chromatography (RPLC) and mass spectrometry (MS).


Assuntos
Biomarcadores/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/análise , Proteoma/análise , Proteômica/métodos , Doença de Alzheimer , Esclerose Lateral Amiotrófica , Cromatografia de Fase Reversa , Humanos , Espectrometria de Massas , Manejo de Espécimes
10.
Pharm Res ; 29(3): 722-38, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22009587

RESUMO

PURPOSE: The use of recombinant human interleukin (rhIL)-15 as a potential therapeutic immune modulator and anticancer agent requires pure, stable preparations. However, purified rhIL-15 preparations readily accumulated heterogeneities. We sought to improve rhIL-15 stability through process, formulation, and targeted amino acid changes. METHODS: The solution state of rhIL-15 versus buffer composition and temperature was studied using SEC and IEX methods. rhIL-15 deamidation was confirmed using RP-HPLC/ESI-MS, enzymatic labeling, and peptide mapping. Deamidation kinetics were measured versus buffer composition and pH using RP-HPLC. Deamidation-resistant rhIL-15 variants (N77A, N77S, N77Q, G78A, and [N71S/N72A/N77A]) were produced in E. coli, then assayed for T-cell culture expansion potency and deamidation resistance. RESULTS: Adding 20% ethanol to buffers or heating at ≥32°C dispersed rhIL-15 transient pairs, improving purification efficiencies. Asparagine 77 deamidated rapidly at pH 7.4 with activation energy of 22.9 kcal per mol. Deamidation in citrate buffer was 17-fold slower at pH 5.9 than at pH 7.4. Amino acid substitutions at N77 or G78 slowed deamidation ≥23-fold. rhIL-15 variants N77A and (N71S/N72A/N77A) were active in a CTLL-2 proliferation assay equivalent to unsubstituted rhIL-15. CONCLUSIONS: The N77A and (N71S/N72A/N77A) rhIL-15 variants are resistant to deamidation and remain potent, thus providing enhanced drug substances for clinical evaluation.


Assuntos
Substituição de Aminoácidos , Asparagina/química , Interleucina-15/química , Interleucina-15/genética , Sequência de Aminoácidos , Animais , Asparagina/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-15/farmacologia , Camundongos , Dados de Sequência Molecular , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Linfócitos T/efeitos dos fármacos
11.
J Proteomics ; 75(1): 56-69, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21621024

RESUMO

A comprehensive proteomic profiling of nasal epithelium (NE) is described. This study relies on simple subcellular fractionation used to obtain soluble- and membrane-enriched fractions followed by 2-dimensional liquid chromatography (2D-LC) separation and tandem mass spectrometry (MS/MS). The cells were collected using a brushing technique applied on NE of clinically evaluated volunteers. Subsequently, the soluble- and the membrane-protein enriched fractions were prepared and analyzed in parallel using 2D-LC-MS/MS. In a set of 1482 identified proteins, 947 (63.9%) proteins were found to be associated to membrane fraction. Grand average hydropathy value index (GRAVY) analysis, the transmembrane protein mapping and annotations of primary location deposited in the Human Protein Reference Database (HPRD) confirmed an enrichment of hydrophobic proteins on this dataset. Ingenuity Pathway Analysis (IPA) of soluble fraction revealed an enrichment of molecular and cellular functions associated with cell death, protein folding and drug metabolism while in membrane fraction showed an enrichment of functions associated with molecular transport, protein trafficking and cell-to-cell signaling and interaction. The IPA showed similar enrichment of functions associated with cellular growth and proliferation in both soluble and membrane subproteomes. This finding was in agreement with protein content analysis using exponentially modified protein abundance index (emPAI). A comparison of our data with previously published studies focusing on respiratory tract epithelium revealed similarities related to identification of proteins associated with physical barrier function and immunological defence. In summary, we extended the NE molecular profile by identifying and characterizing proteins associated to pivotal functions of a respiratory epithelium, including the control of fluid volume and ionic composition at the airways' surface, physical barrier maintenance, detoxification and immunological defence. The extent of similarities supports the applicability of a less invasive analysis of NE to assess prognosis and treatment response of lung diseases such as asthma, cystic fibrosis and chronic obstructive pulmonary disease.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteínas de Membrana/análise , Mucosa Nasal/química , Proteômica/métodos , Fracionamento Celular/métodos , Cromatografia Líquida/métodos , Humanos , Proteínas de Membrana/química , Mucosa Nasal/citologia , Espectrometria de Massas em Tandem/métodos
12.
Electrophoresis ; 32(9): 967-75, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21449066

RESUMO

Many diseases result in specific and characteristic changes in the chemical and biochemical profiles of biological fluids and tissues prior to development of clinical symptoms. These changes are often useful diagnostic and prognostic biomarkers. Identifying biomarkers that can be used for the early detection of cancer will result in more efficient treatments, reduction in suffering, and lower mortality rates. An ideal screening test should be non-invasive with high sensitivity and specificity. Proteomic and metabolomic analyses of biological samples can reveal changes in abundance levels of metabolites and proteins that when validated and confirmed through clinical trials can function as clinical tests for early detection, diagnosis, monitoring disease progression, and predicting therapeutic response. While the past decade has seen great advancements in proteomics and metabolomics research producing potential biomarkers for cancer, most of the identified biomarkers have failed to replace existing clinical tests. To become a clinically approved test, a potential biomarker should be confirmed and validated using hundreds of specimens and should be reproducible, specific, and sensitive. A search of the scientific and medical literature indicates that many studies report the discovery of potential biomarkers without proper validation and/or they do not meet the above criteria. In this manuscript, we will discuss the successes and the pitfalls of biomarker research and comment on study and experimental design, which in most cases is lacking, resulting in suboptimal biomarkers.


Assuntos
Biomarcadores Tumorais/análise , Metabolômica/métodos , Neoplasias/química , Proteômica/métodos , Animais , Biomarcadores Tumorais/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese , Humanos , Espectrometria de Massas , Camundongos , Neoplasias/metabolismo
13.
J Biomol Screen ; 14(6): 708-15, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19531665

RESUMO

The common practice of preparing storage libraries of compounds in 100% DMSO solution well in advance of bioassay brings with it difficulties that affect the accuracy of the data obtained. This publication presents a series of studies done on a subset of compounds that are difficult to bioassay because they precipitate from DMSO solution. These compounds are members of a frequently used, diverse compound library of the sort commonly used in the high-throughput screening (HTS) environment. Experiments were performed to determine the concentration of drug in solution above the precipitate, observe the time course and effect of various mixtures of solvents upon precipitation, measure the viscosity of cosolvents to determine compatibility with HTS, determine water absorption rates for various solvent combinations, and investigate resolubilization techniques to ensure proper drug solution for HTS. Recommendations are made on how to best maximize the probability that problem compounds will remain in solution, be accurately transferred during assay plate production, and, as a result, be accurately bioassayed at the specified molar concentration.


Assuntos
Dimetil Sulfóxido/química , Armazenamento de Medicamentos , Solventes/química , Absorção , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Espectrometria de Massas , Preparações Farmacêuticas/análise , Padrões de Referência , Soluções , Temperatura , Viscosidade , Água/química
15.
Bioconjug Chem ; 20(6): 1228-36, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19425533

RESUMO

The Fc N-glycan chains of four therapeutic monoclonal antibodies (mAbs), namely, Avastin, Rituxan, Remicade, and Herceptin, released by PNGase F, show by MALDI analysis that these biantennary N-glycans are a mixture of G0, G1, and G2 glycoforms. The G0 glycoform has no galactose on the terminal GlcNAc residues, and the G1 and G2 glycoforms have one or two terminal galactose residues, respectively, while no N-glycan with terminal sialic acid residue is observed. We show here that under native conditions we can convert the N-glycans of these mAbs to a homogeneous population of G0 glycoform using beta1,4 galactosidase from Streptococcus pneumoniae. The G0 glycoforms of mAbs can be galactosylated with a modified galactose having a chemical handle at the C2 position, such as ketone or azide, using a mutant beta1,4-galactosyltransferase (beta1,4Gal-T1-Y289L). The addition of the modified galactose at a specific glycan residue of a mAb permits the coupling of a biomolecule that carries an orthogonal reactive group. The linking of a biotinylated or a fluorescent dye carrying derivatives selectively occurs with the modified galactose, C2-keto-Gal, at the heavy chain of these mAbs, without altering their antigen binding activities, as shown by indirect enzyme linked immunosorbent assay (ELISA) and fluorescence activated cell sorting (FACS) methods. Our results demonstrate that the linking of cargo molecules to mAbs via glycans could prove to be an invaluable tool for potential drug targeting by immunotherapeutic methods.


Assuntos
Anticorpos Monoclonais/metabolismo , Antígenos de Superfície/análise , Corantes Fluorescentes/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Sítios de Ligação , Biotinilação , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Galactose/metabolismo , Glucosamina/metabolismo , Glicosilação , Humanos , Imunoglobulina G/análise , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oligossacarídeos/metabolismo , Polissacarídeos/química , Receptor ErbB-2/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem , Especificidade por Substrato , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
Biotechniques ; 45(3): 307-15, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18778254

RESUMO

This article describes an improved pooled open reading frame (ORF) expression technology (POET) that uses recombinational cloning and solution-based tandem mass spectrometry (MS/MS) to identify ORFs that yield high levels of soluble, purified protein when expressed in Escherichia coli. Using this method, three identical pools of 512 human ORFs were subcloned, purified, and transfected into three separate E. coli cultures. After bulk expression and purification, the proteins from the three separate pools were digested into tryptic peptides. Each of these samples was subsequently analyzed in triplicate using reversed-phase high-performance liquid chromatography (LC) coupled directly online with MS/MS. The abundance of each protein was determined by calculating the average exponentially modified protein abundance index (emPAI) of each protein across the three protein pools. Human proteins that consistently gave high emPAI values were subjected to small-scale expression and purification. These clones showed high levels of expression of soluble protein. Conversely, proteins that were not observed by LC-MS/MS did not show any detectable soluble expression in small-scale validation studies. Using this improved POET method allows the expression characteristics of hundreds of proteins to be quickly determined in a single experiment.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Fases de Leitura Aberta , Proteínas/análise , Proteômica/métodos , Espectrometria de Massas em Tandem , Clonagem Molecular , Escherichia coli/genética , Humanos , Peptídeos , Proteínas/isolamento & purificação , Proteínas/metabolismo , Recombinação Genética , Reprodutibilidade dos Testes , Solubilidade , Transfecção , Tripsina/farmacologia
17.
J Urol ; 179(6): 2422-6, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18433783

RESUMO

PURPOSE: The current use of cystoscopy for screening and detecting bladder cancer is invasive and expansive. Various urine based biomarkers have been used for this purpose with limited success. Metabolomics, ie metabonomics, is the quantitative measurement of the metabolic response to pathophysiological stimuli. This analysis provides a metabolite pattern that can be characteristic of various benign and malignant conditions. We evaluated high performance liquid chromatography coupled online with a mass spectrometer metabolomic approach to differentiate urine samples from healthy individuals and patients with bladder cancer. MATERIALS AND METHODS: Urine specimens were collected from 48 healthy individuals and 41 patients with transitional cell carcinoma, and stored at -80C. Samples were analyzed using an Agilent 1100 Series high performance liquid chromatography system (Agilent Technologies, Santa Clara, California) coupled online with a hybrid triple-quad time-of-flight QSTAR XL mass spectrometer. At the time of analysis samples were thawed and centrifuged. The resulting total ion chromatograms of each sample were submitted for statistical analysis. For data interpretation in this study 2 statistical methods were used, that is principal component analysis and orthogonal partial least square-discriminate analysis. RESULTS: Using positive ionization mass spectrometry orthogonal partial least square-discriminate analysis correctly predicted 48 of 48 healthy and 41 of 41 bladder cancer urine samples, while principal component analysis, which is an unsupervised profiling statistical method, confirmed these results and correctly predicted 46 of 48 healthy and 40 of 41 bladder cancer urine samples. CONCLUSIONS: The results of this proof of concept study in a relatively small number of subjects indicate that metabolomics using high performance liquid chromatography-mass spectrometry has the potential to become a noninvasive early detection test for bladder cancer.


Assuntos
Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Bexiga Urinária/metabolismo
18.
J Proteome Res ; 5(2): 349-60, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16457601

RESUMO

Effective quantitative profiling of detergent-insoluble membrane proteins using high-throughput mass spectrometry (MS)-based proteomics would allow a better understanding of physiological and pathological processes that take place at the cell surface. To increase the coverage of proteins present in detergent-resistant membrane microdomains (DRMMs), a combination of 16O/18O and isotope coded affinity tags (ICAT) labeling was used in a comparative analysis of detergent-insoluble membrane proteins isolated from rat basophilic leukemia cells (RBL-2H3), with either Triton X-100 or Brij-96. The analysis resulted in the quantification of 738 unique proteins from Triton X-100 and Brij-96 isolated DRMMs, significantly exceeding the number of proteins quantified from either single labeling technique. Twenty-five noncysteine-containing proteins were quantified, as well as 32 cysteine-containing proteins that would have been missed if either 16O/18O or ICAT labeling had been used exclusively, which illustrate better proteome coverage and enhanced ability to quantitate. The comparative analysis revealed that proteins were more readily extracted using Triton X-100 than Brij-96; however, Triton X-100 also extracted larger quantities of non-DRMMs-associated proteins. This result confirms previous, targeted studies suggesting that DRMMs isolated using Triton X-100 and Brij-96 differ in their protein content.


Assuntos
Proteínas de Membrana/análise , Octoxinol/química , Óleos de Plantas/química , Polietilenoglicóis/química , Proteômica , Tripsina/química , Sequência de Aminoácidos , Animais , Biotina/química , Radioisótopos de Carbono/química , Linhagem Celular Tumoral , Cromatografia de Afinidade , Detergentes/química , Deutério/química , Marcação por Isótopo , Microdomínios da Membrana/química , Dados de Sequência Molecular , Radioisótopos de Oxigênio/química , Ratos , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA