Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
2.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34138759

RESUMO

Mutations in the gene SFTPC, encoding surfactant protein C (SP-C), are associated with interstitial lung disease in children and adults. To assess the natural history of disease, we knocked in a familial, disease-associated SFTPC mutation, L188Q (L184Q [LQ] in mice), into the mouse Sftpc locus. Translation of the mutant proprotein, proSP-CLQ, exceeded that of proSP-CWT in neonatal alveolar type 2 epithelial cells (AT2 cells) and was associated with transient activation of oxidative stress and apoptosis, leading to impaired expansion of AT2 cells during postnatal alveolarization. Differentiation of AT2 to AT1 cells was also inhibited in ex vivo organoid culture of AT2 cells isolated from LQ mice; importantly, treatment with antioxidant promoted alveolar differentiation. Upon completion of alveolarization, SftpcLQ expression was downregulated, leading to resolution of chronic stress responses; however, the failure to restore AT2 cell numbers resulted in a permanent loss of AT2 cells that was linked to decreased regenerative capacity in the adult lung. Collectively, these data support the hypothesis that susceptibility to disease in adult LQ mice is established during postnatal lung development, and they provide a potential explanation for the delayed onset of disease in patients with familial pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/patologia , Predisposição Genética para Doença , Doenças Pulmonares Intersticiais/genética , Proteína C Associada a Surfactante Pulmonar/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Doenças Pulmonares Intersticiais/patologia , Camundongos , Mutação
3.
Am J Respir Cell Mol Biol ; 62(4): 466-478, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31922895

RESUMO

Surfactant protein (SP)-C deficiency is found in samples from patients with idiopathic pulmonary fibrosis, especially in familial forms of this disease. We hypothesized that SP-C may contribute to fibrotic remodeling in aging mice and alveolar lipid homeostasis. For this purpose, we analyzed lung function, alveolar dynamics, lung structure, collagen content, and expression of genes related to lipid and cholesterol metabolism of aging SP-C knockout mice. In addition, in vitro experiments with an alveolar macrophage cell line exposed to lipid vesicles with or without cholesterol and/or SP-C were performed. Alveolar dynamics showed progressive alveolar derecruitment with age and impaired oxygen saturation. Lung structure revealed that decreasing volume density of alveolar spaces was accompanied by increasing of the ductal counterparts. Simultaneously, septal wall thickness steadily increased, and fibrotic wounds appeared in lungs from the age of 50 weeks. This remarkable phenotype is unique to the 129Sv strain, which has an increased absorption of cholesterol, linking the accumulation of cholesterol and the absence of SP-C to a fibrotic remodeling process. The findings of this study suggest that overall loss of SP-C results in an age-dependent, complex, heterogeneous phenotype characterized by a combination of overdistended air spaces and fibrotic wounds that resembles combined emphysema and pulmonary fibrosis in patients with idiopathic pulmonary fibrosis. Addition of SP-C to cholesterol-laden lipid vesicles enhanced the expression of cholesterol metabolism and transport genes in an alveolar macrophage cell line, identifying a potential new lipid-protein axis involved in lung remodeling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Colesterol/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Proteína C/metabolismo , Surfactantes Pulmonares/metabolismo , Idoso , Animais , Enfisema/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Camundongos Knockout , Alvéolos Pulmonares/metabolismo
4.
J Clin Invest ; 127(12): 4314-4325, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083321

RESUMO

Adaptation to respiration at birth depends upon the synthesis of pulmonary surfactant, a lipid-protein complex that reduces surface tension at the air-liquid interface in the alveoli and prevents lung collapse during the ventilatory cycle. Herein, we demonstrated that the gene encoding a subunit of the endoplasmic reticulum membrane complex, EMC3, also known as TMEM111 (Emc3/Tmem111), was required for murine pulmonary surfactant synthesis and lung function at birth. Conditional deletion of Emc3 in murine embryonic lung epithelial cells disrupted the synthesis and packaging of surfactant lipids and proteins, impaired the formation of lamellar bodies, and induced the unfolded protein response in alveolar type 2 (AT2) cells. EMC3 was essential for the processing and routing of surfactant proteins, SP-B and SP-C, and the biogenesis of the phospholipid transport protein ABCA3. Transcriptomic, lipidomic, and proteomic analyses demonstrated that EMC3 coordinates the assembly of lipids and proteins in AT2 cells that is necessary for surfactant synthesis and function at birth.


Assuntos
Células Epiteliais Alveolares/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Respiração , Células Epiteliais Alveolares/citologia , Animais , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Peptídeos/genética , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar
5.
Cell Stem Cell ; 21(4): 472-488.e10, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28965766

RESUMO

Lung alveoli, which are unique to air-breathing organisms, have been challenging to generate from pluripotent stem cells (PSCs) in part because there are limited model systems available to provide the necessary developmental roadmaps for in vitro differentiation. Here we report the generation of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, from human PSCs. Using multicolored fluorescent reporter lines, we track and purify human SFTPC+ alveolar progenitors as they emerge from endodermal precursors in response to stimulation of Wnt and FGF signaling. Purified PSC-derived SFTPC+ cells form monolayered epithelial "alveolospheres" in 3D cultures without the need for mesenchymal support, exhibit self-renewal capacity, and display additional AEC2 functional capacities. Footprint-free CRISPR-based gene correction of PSCs derived from patients carrying a homozygous surfactant mutation (SFTPB121ins2) restores surfactant processing in AEC2s. Thus, PSC-derived AEC2s provide a platform for disease modeling and future functional regeneration of the distal lung.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Células-Tronco Pluripotentes/citologia , Alvéolos Pulmonares/citologia , Sequência de Bases , Linhagem Celular , Proliferação de Células , Autorrenovação Celular , Separação Celular , Células Epiteliais/ultraestrutura , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Pneumopatias/patologia , Modelos Biológicos , Alvéolos Pulmonares/ultraestrutura , Surfactantes Pulmonares/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Fatores de Tempo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
6.
Sci Rep ; 7: 46416, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28401922

RESUMO

Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7epi∆/∆). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice.


Assuntos
Proteínas de Transporte/metabolismo , Células Epiteliais/metabolismo , Homeostase/genética , Mitocôndrias/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
7.
J Immunol ; 195(4): 1628-36, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26163587

RESUMO

The anionic antimicrobial peptide SP-B(N), derived from the N-terminal saposin-like domain of the surfactant protein (SP)-B proprotein, and SP-A are lung anti-infective proteins. SP-A-deficient mice are more susceptible than wild-type mice to lung infections, and bacterial killing is enhanced in transgenic mice overexpressing SP-B(N). Despite their potential anti-infective action, in vitro studies indicate that several microorganisms are resistant to SP-A and SP-B(N). In this study, we test the hypothesis that these proteins act synergistically or cooperatively to strengthen each other's microbicidal activity. The results indicate that the proteins acted synergistically in vitro against SP-A- and SP-B(N)-resistant capsulated Klebsiella pneumoniae (serotype K2) at neutral pH. SP-A and SP-B(N) were able to interact in solution (Kd = 0.4 µM), which enabled their binding to bacteria with which SP-A or SP-B(N) alone could not interact. In vivo, we found that treatment of K. pneumoniae-infected mice with SP-A and SP-B(N) conferred more protection against K. pneumoniae infection than each protein individually. SP-A/SP-B(N)-treated infected mice showed significant reduction of bacterial burden, enhanced neutrophil recruitment, and ameliorated lung histopathology with respect to untreated infected mice. In addition, the concentrations of inflammatory mediators in lung homogenates increased early in infection in contrast with the weak inflammatory response of untreated K. pneumoniae-infected mice. Finally, we found that therapeutic treatment with SP-A and SP-B(N) 6 or 24 h after bacterial challenge conferred significant protection against K. pneumoniae infection. These studies show novel anti-infective pathways that could drive development of new strategies against pulmonary infections.


Assuntos
Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Sinergismo Farmacológico , Humanos , Concentração de Íons de Hidrogênio , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Ligação Proteica , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína B Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteínas Associadas a Surfactantes Pulmonares/genética , Proteínas Associadas a Surfactantes Pulmonares/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia
8.
J Lipid Res ; 56(7): 1370-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26022805

RESUMO

The surfactant proteins (SPs), SP-B and SP-C, are important components of pulmonary surfactant involved in the reduction of alveolar surface tension. Quantification of SP-B and SP-C in surfactant drugs is informative for their quality control and the evaluation of their biological activity. Western blot analysis enabled the quantification of SP-B, but not SP-C, in surfactant drugs. Here, we report a new procedure involving chemical treatments and LC-MS to analyze SP-C peptides. The procedure enabled qualitative analysis of SP-C from different species with discrimination of the palmitoylation status and the artificial modifications that occur during handling and/or storage. In addition, the method can be used to estimate the total amount of SP-C in pulmonary surfactant drugs. The strategy described here might serve as a prototype to establish analytical methods for peptides that are extremely hydrophobic and behave like lipids. The new method provides an easy measurement of SP-C from various biological samples, which will help the characterization of various experimental animal models and the quality control of surfactant drugs, as well as diagnostics of human samples.


Assuntos
Cromatografia Líquida/métodos , Lipoilação , Espectrometria de Massas/métodos , Proteína B Associada a Surfactante Pulmonar/análise , Proteína B Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/análise , Proteína C Associada a Surfactante Pulmonar/química , Animais , Western Blotting , Bovinos , Humanos , Camundongos , Fragmentos de Peptídeos/análise , Tensoativos/química
9.
J Immunol ; 194(12): 5635-43, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25980009

RESUMO

Allergic asthma is a chronic inflammatory disorder that affects ∼20% of the population worldwide. Microarray analyses of nasal epithelial cells from acute asthmatic patients detected a 50% decrease in expression of Stard7, an intracellular phosphatidylcholine transport protein. To determine whether loss of Stard7 expression promotes allergic responses, mice were generated in which one allele of the Stard7 locus was globally disrupted (Stard7 (+/-) mice). OVA sensitization and challenge of Stard7(+/-) mice resulted in a significant increase in pulmonary inflammation, mucous cell metaplasia, airway hyperresponsiveness, and OVA-specific IgE compared with OVA-sensitized/challenged wild-type (WT) mice. This exacerbation was largely Th2-mediated with a significant increase in CD4(+)IL-13(+) T cells and IL-4, IL-5, and IL-13 cytokines. The loss of Stard7 was also associated with increased lung epithelial permeability and activation of proinflammatory dendritic cells in sensitized and/or challenged Stard7 (+/-) mice. Notably, OVA-pulsed dendritic cells from Stard7(+/-) mice were sufficient to confer an exaggerated allergic response in OVA-challenged WT mice, although airway hyperresponsiveness was greater in Stard7(+/-) recipients compared with WT recipients. Enhanced allergic responses in the lung were accompanied by age-dependent development of spontaneous atopic dermatitis. Overall, these data suggest that Stard7 is an important component of a novel protective pathway in tissues exposed to the extracellular environment.


Assuntos
Proteínas de Transporte/genética , Haploinsuficiência , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Pulmão/imunologia , Pele/imunologia , Transferência Adotiva , Animais , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Dermatite/genética , Dermatite/imunologia , Dermatite/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Deleção de Genes , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Permeabilidade , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Pele/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
10.
Annu Rev Pathol ; 10: 371-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25621661

RESUMO

Advances in physiology and biochemistry have provided fundamental insights into the role of pulmonary surfactant in the pathogenesis and treatment of preterm infants with respiratory distress syndrome. Identification of the surfactant proteins, lipid transporters, and transcriptional networks regulating their expression has provided the tools and insights needed to discern the molecular and cellular processes regulating the production and function of pulmonary surfactant prior to and after birth. Mutations in genes regulating surfactant homeostasis have been associated with severe lung disease in neonates and older infants. Biophysical and transgenic mouse models have provided insight into the mechanisms underlying surfactant protein and alveolar homeostasis. These studies have provided the framework for understanding the structure and function of pulmonary surfactant, which has informed understanding of the pathogenesis of diverse pulmonary disorders previously considered idiopathic. This review considers the pulmonary surfactant system and the genetic causes of acute and chronic lung disease caused by disruption of alveolar homeostasis.


Assuntos
Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Animais , Homeostase , Humanos , Pulmão/metabolismo , Pneumopatias/genética , Pneumopatias/metabolismo , Proteínas Associadas a Surfactantes Pulmonares/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética
11.
PLoS One ; 9(9): e107473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25222125

RESUMO

ERdj4 is a BiP cochaperone regulated by the unfolded protein response to facilitate degradation of unfolded and/or misfolded proteins in the endoplasmic reticulum. As the unfolded protein response plays a critical role in B cell maturation and antibody production, ERdj4 gene trap mice were generated to determine if this chaperone was required for B cell homeostasis. Homozygosity for the trapped allele resulted in hypomorphic expression of ERdj4 in bone marrow cells and abnormal development of hematopoietic lineages in the bone marrow. The number of myeloid cells was increased, while the number of erythroid and B lymphoid cells was reduced in ERdj4 gene trap mice compared to controls. An intrinsic B cell defect was identified that decreased survival of B cell precursors including large and small pre-B, and immature B cells. Consistent with impaired B lymphopoiesis, the number of mature follicular B cells was reduced in both the bone marrow and spleen of ERdj4 gene trap mice. Paradoxically, unchallenged ERdj4 gene trap mice showed non-specific hypergammaglobulinemia and gene trap B cells exhibited increased proliferation, survival and isotype switching in response to LPS stimulation. Although ERdj4 gene trap mice responded normally to T cell-independent antigen, they failed to mount a specific antibody response to T cell-dependent antigen in vivo. Collectively, these findings demonstrate that the chaperone activity of ERdj4 is required for survival of B cell progenitors and normal antibody production.


Assuntos
Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Células Precursoras de Linfócitos B/imunologia , Animais , Anticorpos/imunologia , Células da Medula Óssea/imunologia , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Hematopoese/genética , Hematopoese/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Chaperonas Moleculares/imunologia , Células Precursoras de Linfócitos B/metabolismo , Baço/imunologia , Resposta a Proteínas não Dobradas/genética
12.
Am J Respir Crit Care Med ; 189(2): 214-22, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24160862

RESUMO

The median survival of patients with idiopathic pulmonary fibrosis (IPF) continues to be approximately 3 years from the time of diagnosis, underscoring the lack of effective medical therapies for this disease. In the United States alone, approximately 40,000 patients die of this disease annually. In November 2012, the NHLBI held a workshop aimed at coordinating research efforts and accelerating the development of IPF therapies. Basic, translational, and clinical researchers gathered with representatives from the NHLBI, patient advocacy groups, pharmaceutical companies, and the U.S. Food and Drug Administration to review the current state of IPF research and identify priority areas, opportunities for collaborations, and directions for future research. The workshop was organized into groups that were tasked with assessing and making recommendations to promote progress in one of the following six critical areas of research: (1) biology of alveolar epithelial injury and aberrant repair; (2) role of extracellular matrix; (3) preclinical modeling; (4) role of inflammation and immunity; (5) genetic, epigenetic, and environmental determinants; (6) translation of discoveries into diagnostics and therapeutics. The workshop recommendations provide a basis for directing future research and strategic planning by scientific, professional, and patient communities and the NHLBI.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Pesquisa Biomédica/tendências , Modelos Animais de Doenças , Matriz Extracelular/patologia , Predisposição Genética para Doença , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/terapia , Inflamação/imunologia , Camundongos , Alvéolos Pulmonares/patologia , Mucosa Respiratória/patologia
13.
Am J Respir Cell Mol Biol ; 47(3): 324-31, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22461427

RESUMO

Mutations in the SFTPC gene, encoding surfactant protein-C (SP-C), are associated with interstitial lung disease (ILD). Knowledge of the intracellular fate of mutant SP-C is essential in the design of therapies to correct trafficking/processing of the proprotein, and to prevent the formation of cytotoxic aggregates. We assessed the potential of a chemical chaperone to correct the trafficking and processing of three disease-associated mutant SP-C proteins. HEK293 cells were stably transfected with wild-type (SP-C(WT)) or mutant (SP-C(L188Q), SP-C(Δexon4), or SP-C(I73T)) SP-C, and cell lines with a similar expression of SP-C mRNA were identified. The effects of the chemical chaperone 4-phenylbutyric acid (PBA) and lysosomotropic drugs on intracellular trafficking to the endolysosomal pathway and the subsequent conversion of SP-C proprotein to mature peptide were assessed. Despite comparable SP-C mRNA expression, proprotein concentrations varied greatly: SP-C(I73T) was more abundant than SP-C(WT) and was localized to the cell surface, whereas SP-C(Δexon4) was barely detectable. In contrast, SP-C(L188Q) and SP-C(WT) proprotein concentrations were comparable, and a small amount of SP-C(L188Q) was localized to the endolysosomal pathway. PBA treatment restored the trafficking and processing of SP-C(L188Q) to SP-C(WT) concentrations, but did not correct the mistrafficking of SP-C(I73T) or rescue SP-C(Δexon4). PBA treatment also promoted the aggregation of SP-C proproteins, including SP-C(L188Q). This study provides proof of the principle that a chemical chaperone can correct the mistrafficking and processing of a disease-associated mutant SP-C proprotein.


Assuntos
Mutação , Fenilbutiratos/farmacologia , Proteína C Associada a Surfactante Pulmonar/metabolismo , Linhagem Celular , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Humanos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteína C Associada a Surfactante Pulmonar/genética , RNA Mensageiro/genética , Solubilidade
14.
Annu Rev Med ; 61: 105-19, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19824815

RESUMO

The alveolar region of the lung creates an extensive epithelial surface that mediates the transfer of oxygen and carbon dioxide required for respiration after birth. Maintenance of pulmonary function depends on the function of type II epithelial cells that synthesize and secrete pulmonary surfactant lipids and proteins, reducing the collapsing forces created at the air-liquid interface in the alveoli. Genetic and acquired disorders associated with the surfactant system cause both acute and chronic lung disease. Mutations in the ABCA3, SFTPA, SFTPB, SFTPC, SCL34A2, and TERT genes disrupt type II cell function and/or surfactant homeostasis, causing neonatal respiratory failure and chronic interstitial lung disease. Defects in GM-CSF receptor function disrupt surfactant clearance, causing pulmonary alveolar proteinosis. Abnormalities in the surfactant system and disruption of type II cell homeostasis underlie the pathogenesis of pulmonary disorders previously considered idiopathic, providing the basis for improved diagnosis and therapies of these rare lung diseases.


Assuntos
Pneumopatias/etiologia , Proteínas Associadas a Surfactantes Pulmonares/fisiologia , Adulto , Criança , Células Epiteliais/fisiologia , Humanos , Lactente , Pneumopatias/diagnóstico , Pneumopatias/terapia , Macrófagos Alveolares/fisiologia , Alvéolos Pulmonares/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia
15.
Am J Respir Cell Mol Biol ; 42(2): 181-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19423771

RESUMO

We previously proposed a model of surfactant protein (SP)-C biosynthesis in which internalization of the proprotein from the limiting membrane of the multivesicular body to internal vesicles represents a key step in the processing and secretion of SP-C. To test this hypothesis, alanine mutagenesis of the N-terminal propeptide of SP-C was performed. Adenoviruses encoding mutant proproteins were infected into type II cells isolated from Sftpc(-/-) mice, and media analyzed for secreted SP-C 24 hours after infection. Mutation of S(12)PPDYS(17) completely blocked secretion of SP-C. PPDY (PY motif) has previously been shown to bind WW domains of neural precursor cell-expressed developmentally down-regulated (Nedd) 4-like E3 ubiquitin ligases. Purified recombinant glutathione S-transferase-SP-C propeptide (residues 1-35) bound recombinant Nedd4-2 strongly, and Nedd4 weakly; the S(12)PPDYS(17)mutation abrogated binding of SP-C to Nedd4-2. Immobilized recombinant Nedd4-2 WW domain captured SP-C proprotein from mouse type II cell lysates; in the reverse pulldown, endogenous SP-C in type II cells was captured by recombinant Nedd4-2. To determine if the interaction of Nedd4-2 and SP-C resulted in ubiquitination, the SP-C proprotein was immunoprecipitated from transiently transfected human embryonic kidney 293 cells, and analyzed by SDS-PAGE/Western blotting with ubiquitin antibody. Two ubiquitinated forms of SP-C were detected; ubiquitination was blocked by mutation of K6, but not K34, in the SP-C propeptide. Mutation of K6 also inhibited processing of SP-C proprotein to the mature peptide in human embryonic kidney 293 cells. Nedd4-2-mediated ubiquitination regulates lumenal relocation of SP-C, leading to processing and, ultimately, secretion of SP-C.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Peptídeos/metabolismo , Alvéolos Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ubiquitina-Proteína Ligases Nedd4 , Peptídeos/química , Peptídeos/deficiência , Peptídeos/genética , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Alvéolos Pulmonares/citologia , Proteína C Associada a Surfactante Pulmonar , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
16.
J Biol Chem ; 284(48): 33377-83, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19815549

RESUMO

Autosomal dominant mutations in the SFTPC gene are associated with idiopathic pulmonary fibrosis, a progressive lethal interstitial lung disease. Mutations that cause misfolding of the encoded proprotein surfactant protein C (SP-C) trigger endoplasmic reticulum (ER)-associated degradation, a pathway that segregates terminally misfolded substrate for retrotranslocation to the cytosol and degradation by proteasome. Microarray screens for genes involved in SP-C ER-associated degradation identified MKS3/TMEM67, a locus previously linked to the ciliopathy Meckel-Gruber syndrome. In this study, MKS3 was identified as a membrane glycoprotein predominantly localized to the ER. Expression of MKS3 was up-regulated by genetic or pharmacological inducers of ER stress. The ER lumenal domain of MKS3 interacted with a complex that included mutant SP-C and associated chaperones, whereas the region predicted to encode the transmembrane domains of MKS3 interacted with cytosolic p97. Deletion of the transmembrane and cytosolic domains abrogated interaction of MKS3 with p97 and resulted in accumulation of mutant SP-C proprotein; knockdown of MKS3 also inhibited degradation of mutant SP-C. These results support a model in which MKS3 links the ER lumenal quality control machinery with the cytosolic degradation apparatus.


Assuntos
Retículo Endoplasmático/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Animais , Sítios de Ligação , Western Blotting , Linhagem Celular , Retículo Endoplasmático/ultraestrutura , Humanos , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Dobramento de Proteína , Transporte Proteico , Proteína C Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/genética , Interferência de RNA , Ratos , Transfecção
17.
Am J Respir Cell Mol Biol ; 41(2): 226-36, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19131640

RESUMO

The etiology of acute lung injury is complex and associated with numerous, chemically diverse precipitating factors. During acute lung injury in mice, one key event is epithelial cell injury that leads to reduced surfactant biosynthesis. We have previously reported that transgenic mice that express transforming growth factor alpha (TGFA) in the lung were protected during nickel-induced lung injury. Here, we find that the mechanism by which TGFA imparts protection includes maintenance of surfactant-associated protein B (SFTPB) transcript levels and epidermal growth factor receptor-dependent signaling in distal pulmonary epithelial cells. This protection is complex and not accompanied by a diminution in inflammatory mediator transcripts or additional stimulation of antioxidant transcripts. In mouse lung epithelial (MLE-15) cells, microarray analysis demonstrated that nickel increased transcripts of genes enriched in MTF1, E2F-1, and AP-2 transcription factor-binding sites and decreased transcripts of genes enriched in AP-1-binding sites. Nickel also increased Jun transcript and DNA-binding activity, but decreased SFTPB transcript. Expression of SFTPB under the control of a doxycycline-sensitive promoter increased survival during nickel-induced injury as compared with control mice. Together, these findings support the idea that maintenance of SFTPB expression is critical to survival during acute lung injury.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Níquel/toxicidade , Proteína B Associada a Surfactante Pulmonar/metabolismo , Administração por Inalação , Aerossóis , Animais , Células Cultivadas , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteína B Associada a Surfactante Pulmonar/genética , Mucosa Respiratória/citologia , Taxa de Sobrevida , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador alfa/genética , Fator de Crescimento Transformador alfa/metabolismo
18.
Mol Biol Cell ; 19(6): 2620-30, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18400946

RESUMO

Mutations in the SFTPC gene associated with interstitial lung disease in human patients result in misfolding, endoplasmic reticulum (ER) retention, and degradation of the encoded surfactant protein C (SP-C) proprotein. In this study, genes specifically induced in response to transient expression of two disease-associated mutations were identified by microarray analyses. Immunoglobulin heavy chain binding protein (BiP) and two heat shock protein 40 family members, endoplasmic reticulum-localized DnaJ homologues ERdj4 and ERdj5, were significantly elevated and exhibited prolonged and specific association with the misfolded proprotein; in contrast, ERdj3 interacted with BiP, but it did not associate with either wild-type or mutant SP-C. Misfolded SP-C, ERdj4, and ERdj5 coprecipitated with p97/VCP indicating that the cochaperones remain associated with the misfolded proprotein until it is dislocated to the cytosol. Knockdown of ERdj4 and ERdj5 expression increased ER retention and inhibited degradation of misfolded SP-C, but it had little effect on the wild-type protein. Transient expression of ERdj4 and ERdj5 in X-box binding protein 1(-/-) mouse embryonic fibroblasts substantially restored rapid degradation of mutant SP-C proprotein, whereas transfection of HPD mutants failed to rescue SP-C endoplasmic reticulum-associated protein degradation. ERdj4 and ERdj5 promote turnover of misfolded SP-C and this activity is dependent on their ability to stimulate BiP ATPase activity.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Proteína C Associada a Surfactante Pulmonar/química , Proteína C Associada a Surfactante Pulmonar/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Citosol/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Chaperona BiP do Retículo Endoplasmático , Éxons/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Imunoprecipitação , Insulina/metabolismo , Camundongos , Proteínas Mutantes/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Proteína com Valosina
19.
Lab Invest ; 88(3): 256-63, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18195689

RESUMO

Members of the aspartic protease family have been implicated in cancer progression. The aspartic protease napsin A is expressed in type II cells of the lung, where it is involved in the processing of surfactant protein B (SP-B). Napsin A is also expressed in kidney, where its function is unknown. Here, we examined napsin A mRNA expression in human kidney tissues using in situ hybridization. Whereas strong napsin A mRNA expression was observed in kidney proximal tubules, expression was detected in only one of 29 renal cell carcinomas. This result is consistent with previous observations of loss of napsin A expression in high-grade lung adenocarcinomas. We re-expressed napsin A in the tumorigenic HEK293 kidney cell line and examined the phenotype of stably transfected cells. Napsin A-expressing HEK293 cells showed an altered phenotype characterized by formation of cyst-like structures in three-dimensional collagen cultures. Napsin A-expressing cells also showed reduced capacity for anchorage-independent growth and formed tumors in SCID mice with a lower efficiency and slower onset compared to vector-transfected control cells. Mutation of one of the aspartic acid residues in the napsin A catalytic site inactivated enzymatic activity, but did not influence the ability to suppress colony formation in soft agar and tumor formation. The mutation of the catalytic site did not affect processing, glycosylation or intracellular localization of napsin A. These data show that napsin A inhibits tumor growth of HEK293 cells by a mechanism independent of its catalytic activity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Neoplasias/tratamento farmacológico , Animais , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/uso terapêutico , Carcinoma Hepatocelular/patologia , Catálise , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Clonais , Colágeno/química , DNA Complementar , Histidina/metabolismo , Humanos , Rim/citologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos SCID , Mutação , RNA Mensageiro/análise , Fatores de Tempo , Transfecção , Transplante Heterólogo , Carga Tumoral
20.
J Histochem Cytochem ; 55(1): 71-83, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16982851

RESUMO

ABCA3 is a member of the ATP-binding cassette (ABC) family of transport proteins and is required for perinatal respiratory adaptation. Monoclonal and polyclonal antibodies were generated against a recombinant human ABCA3 peptide and used to assess its expression in the developing lung and adult tissues. Immunostaining for ABCA3 was detected at highest levels in type II epithelial cells of the lung but was also noted in other organs including liver, stomach, kidney, adrenal, pancreas, trachea, and brain. In the fetal lung, ABCA3 staining and mRNA increased prior to birth. Like other surfactant protein genes, ABCA3 expression was induced by thyroid transcription factor-1 in vitro. ABCA3 was coexpressed with SP-B and proSP-C in type II epithelial cells. ABCA3 staining was detected surrounding large, intracellular organelles consistent with its association with lamellar bodies. In the human fetal lung, ABCA3 staining was not detected prior to 22-23 weeks of gestation, except in the presence of pulmonary inflammation. ABCA3 was detected in type II epithelial cells of the human lung from 28 weeks of gestation and thereafter. Postnatally, intense ABCA3 staining was observed in hyperplastic epithelial cells relining injured airways in infants with chronic lung disease. Localization and regulation of ABCA3 in the respiratory epithelium is consistent with its proposed role in surfactant homeostasis. The role of ABCA3 in extrapulmonary tissues and organs remains to be elucidated. This manuscript contains online supplemental material at (www.jhc.org). Please visit this article online to view these materials.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Pulmão/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Sequência de Aminoácidos , Animais , Displasia Broncopulmonar/metabolismo , Criança , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Pulmão/embriologia , Pulmão/crescimento & desenvolvimento , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA