Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Immunohorizons ; 5(10): 802-817, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663594

RESUMO

ARID3a is a DNA-binding protein important for normal hematopoiesis in mice and for in vitro lymphocyte development in human cultures. ARID3a knockout mice die in utero with defects in both early hematopoietic stem cell populations and erythropoiesis. Recent transcriptome analyses in human erythropoietic systems revealed increases in ARID3a transcripts implicating potential roles for ARID3a in human erythrocyte development. However, ARID3a transcript levels do not faithfully reflect protein levels in many cells, and the functions and requirements for ARID3a protein in those systems have not been explored. We used the erythroleukemic cell line K562 as a model to elucidate functions of ARID3a protein in early human erythropoiesis. ARID3a knockdown of hemin-stimulated K562 cells resulted in lack of fetal globin production and modifications in gene expression. Temporal RNA sequencing data link ARID3a expression with the important erythroid regulators Gata1, Gata2, and Klf1 Ablation of ARID3a using CRISPR-Cas9 further demonstrated it is required to maintain chromatin structures associated with erythropoietic differentiation potential. These data demonstrate that the ARID3a protein is required for early erythropoietic events and provide evidence for the requirement of ARID3a functions for proper maintenance of appropriate chromatin structures.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/deficiência , Eritropoese/genética , Fatores de Transcrição/deficiência , Sistemas CRISPR-Cas/genética , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Globulinas Fetais/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Humanos , Células K562 , RNA-Seq , Fatores de Transcrição/genética
2.
Immun Ageing ; 17: 24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905435

RESUMO

BACKGROUND: Immunologic aging leads to immune dysfunction, significantly reducing the quality of life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell development, functionally defective mature immune cells, and poor protective responses to vaccines and pathogens. Despite considerable progress understanding the underlying causes of decreased immunity in the elderly, the mechanisms by which these occur are still poorly understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not been analyzed, nor has ARID3a expression been assessed in relationship to age. We hypothesized that decreases in ARID3a could explain some of the defects observed in aging. RESULTS: Our data reveal decreased frequencies of ARID3a-expressing peripheral blood HSCs from aged healthy individuals compared with young donor HSCs. Inhibition of ARID3a in young donor-derived HSCs limits B lineage potential, suggesting a role for ARID3a in B lymphopoiesis in bone marrow-derived HSCs. Increasing ARID3a levels of HSCs from aged donors in vitro alters B lineage development and maturation. Finally, single cell analyses of ARID3a-expressing HSCs from young versus aged donors identify a number of differentially expressed genes in aged ARID3A-expressing cells versus young ARID3A-expressing HSCs, as well as between ARID3A-expressing and non-expressing cells in both young and aged donor HSCs. CONCLUSIONS: These data suggest that ARID3a-expressing HSCs from aged individuals differ at both molecular and functional levels compared to ARID3a-expressing HSCs from young individuals.

3.
Cell Immunol ; 357: 104201, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32979763

RESUMO

The DNA binding protein AT-rich interacting domain 3a (ARID3a)2 is expressed in healthy human hematopoietic cord blood progenitors where its modulation influences myeloid versus B lineage development. ARID3a is also variably expressed in subsets of adult peripheral blood hematopoietic progenitors where the consequences of ARID3a expression are unknown. In B lymphocytes, Toll-like receptor (TLR)3 signaling induces ARID3a expression in association with Type I interferon inflammatory cytokines. We hypothesized that TLR ligand stimulation of peripheral blood hematopoietic progenitors would induce ARID3a expression resulting in interferon production, and potentially influencing lineage decisions. Our data revealed that the TLR9 agonist CpG induces ARID3a expression with interferon alpha synthesis in human hematopoietic progenitors. However, ARID3a expression was not associated with increased B lineage development. These results demonstrate the need for further experiments to better define how pathogen-associated responses influence hematopoiesis.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Células-Tronco Hematopoéticas/metabolismo , Interferon-alfa/biossíntese , Receptores Toll-Like/sangue , Fatores de Transcrição/biossíntese , Adulto , Linfócitos B/citologia , Linfócitos B/metabolismo , Ilhas de CpG , Citocinas/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/sangue , Feminino , Citometria de Fluxo/métodos , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Interferon-alfa/genética , Interferon-alfa/imunologia , Ligantes , Pessoa de Meia-Idade , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/sangue
4.
Cells ; 8(10)2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31554207

RESUMO

Systemic lupus erythematosus (SLE) is a devastating and heterogeneous autoimmune disease that affects multiple organs, and for which the underlying causes are unknown. The majority of SLE patients produce autoantibodies, have increased levels of type-I inflammatory cytokines, and can develop glomerulonephritis. Recent studies indicate an unexpected but strong association between increased disease activity in SLE patients and the expression of the DNA-binding protein ARID3a (A + T rich interaction domain protein 3a) in a number of peripheral blood cell types. ARID3a expression was first associated with autoantibody production in B cells; however, more recent findings also indicate associations with expression of the inflammatory cytokine interferon alpha in SLE plasmacytoid dendritic cells and low-density neutrophils. In addition, ARID3a is expressed in hematopoietic stem cells and some adult kidney progenitor cells. SLE cells expressing enhanced ARID3a levels show differential gene expression patterns compared with homologous healthy control cells, identifying new pathways potentially regulated by ARID3a. The associations of ARID3a expression with increased disease severity in SLE, suggest that it, or its downstream targets, may provide new therapeutic targets for SLE.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/terapia , Terapia de Alvo Molecular/tendências , Fatores de Transcrição/fisiologia , Adulto , Células-Tronco Adultas/fisiologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Proteínas de Ligação a DNA/genética , Células Dendríticas/fisiologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Terapia de Alvo Molecular/métodos , Fatores de Transcrição/genética
5.
Front Immunol ; 9: 3064, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30697210

RESUMO

Memory B cells that are generated during an infection or following vaccination act as sentinels to guard against future infections. Upon repeat antigen exposure memory B cells differentiate into new antibody-secreting plasma cells to provide rapid and sustained protection. Some pathogens evade or suppress the humoral immune system, or induce memory B cells with a diminished ability to differentiate into new plasma cells. This leaves the host vulnerable to chronic or recurrent infections. Single cell approaches coupled with next generation antibody gene sequencing facilitate a detailed analysis of the pathogen-specific memory B cell repertoire. Monoclonal antibodies that are generated from antibody gene sequences allow a functional analysis of the repertoire. This review discusses what has been learned thus far from analysis of diverse pathogen-specific memory B cell compartments and describes major differences in their repertoires. Such information may illuminate ways to advance the goal of improving vaccine and therapeutic antibody design.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Plasmócitos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/metabolismo , Antígenos/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Humoral/imunologia , Plasmócitos/metabolismo
6.
J Autoimmun ; 75: 130-140, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27522115

RESUMO

Previously, we determined that enhanced disease activity in patients with systemic lupus erythematosus (SLE) was associated with dramatic increases in numbers of B lymphocytes expressing the transcription factor ARID3a. Our data now indicate ARID3a is important for interferon alpha (IFNa) expression and show a strong association between ARID3a expression and transcription of genes associated with lupus IFN signatures. Furthermore, both ARID3a and IFNa production were elicited in healthy control B cells upon stimulation with the TLR 9 agonist, CpG. Importantly, secretion of IFNa from ARID3a+ healthy B lymphocytes stimulated increased IFNa production in plasmacytoid dendritic cells. These data identify ARID3a+ B cells as a novel type of effector B cell, and link ARID3a expression in B lymphocytes to IFN-associated inflammatory responses in SLE.


Assuntos
Subpopulações de Linfócitos B/imunologia , Proteínas de Ligação a DNA/imunologia , Expressão Gênica/imunologia , Interferon-alfa/imunologia , Fatores de Transcrição/imunologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Interferon-alfa/sangue , Interferon-alfa/metabolismo , Oligodesoxirribonucleotídeos/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
J Immunol ; 196(2): 614-23, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26685208

RESUMO

We recently reported that the transcription factor ARID3a is expressed in a subset of human hematopoietic progenitor stem cells in both healthy individuals and in patients with systemic lupus erythematosus. Numbers of ARID3a(+) lupus hematopoietic stem progenitor cells were associated with increased production of autoreactive Abs when those cells were introduced into humanized mouse models. Although ARID3a/Bright knockout mice died in utero, they exhibited decreased numbers of hematopoietic stem cells and erythrocytes, indicating that ARID3a is functionally important for hematopoiesis in mice. To explore the requirement for ARID3a for normal human hematopoiesis, hematopoietic stem cell progenitors from human cord blood were subjected to both inhibition and overexpression of ARID3a in vitro. Inhibition of ARID3a resulted in decreased B lineage cell production accompanied by increases in cells with myeloid lineage markers. Overexpression of ARID3a inhibited both myeloid and erythroid differentiation. Additionally, inhibition of ARID3a in hematopoietic stem cells resulted in altered expression of transcription factors associated with hematopoietic lineage decisions. These results suggest that appropriate regulation of ARID3a is critical for normal development of both myeloid and B lineage pathways.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Fatores de Transcrição/metabolismo , Linhagem da Célula , Sangue Fetal , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Técnicas In Vitro , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Transdução Genética
8.
J Immunol ; 194(3): 940-9, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25535283

RESUMO

Although hematopoietic stem/progenitor cells (HSPCs) are used for transplantation, characterization of the multiple subsets within this population in humans has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in humans have not been defined. We previously showed increased numbers of ARID3a(+) B cells in nearly half of systemic lupus erythematosus (SLE) patients, and total numbers of ARID3a(+) B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HSPCs in either healthy controls or SLE patients. Numbers of ARID3a(+) HSPCs in SLE patients were increased over numbers of ARID3a(+) cells in healthy controls. Although all SLE-derived HSPCs exhibited poor colony formation in vitro compared with controls, SLE HSPCs with high numbers of ARID3a(+) cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HSPCs with high numbers of ARID3a(+) cells also more readily generated autoantibody-producing cells than HSPCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HSPCs could be informative for applications requiring transplantation of those cells.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Fatores de Transcrição/genética , Adulto , Idoso , Animais , Anticorpos Antinucleares/imunologia , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Antígenos de Superfície/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Estudos de Casos e Controles , Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Adulto Jovem
9.
Front Immunol ; 5: 113, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24678314

RESUMO

ARID3a/Bright is a DNA-binding protein that was originally discovered for its ability to increase immunoglobulin transcription in antigen-activated B cells. It interacts with DNA as a dimer through its ARID, or A/T-rich interacting domain. In association with other proteins, ARID3a increased transcription of the immunoglobulin heavy chain and led to improved chromatin accessibility of the heavy chain enhancer. Constitutive expression of ARID3a in B lineage cells resulted in autoantibody production, suggesting its regulation is important. Abnormal ARID3a expression has also been associated with increased proliferative capacity and malignancy. Roles for ARID3a in addition to interactions with the immunoglobulin locus were suggested by transgenic and knockout mouse models. Over-expression of ARID3a resulted in skewing of mature B cell subsets and altered gene expression patterns of follicular B cells, whereas loss of function resulted in loss of B1 lineage B cells and defects in hematopoiesis. More recent studies showed that loss of ARID3a in adult somatic cells promoted developmental plasticity, alterations in gene expression patterns, and lineage fate decisions. Together, these data suggest new regulatory roles for ARID3a. The genes influenced by ARID3a are likely to play pivotal roles in lineage decisions, highlighting the importance of this understudied transcription factor.

10.
Stem Cell Reports ; 2(1): 26-35, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24511468

RESUMO

We show here that singular loss of the Bright/Arid3A transcription factor leads to reprograming of mouse embryonic fibroblasts (MEFs) and enhancement of standard four-factor (4F) reprogramming. Bright-deficient MEFs bypass senescence and, under standard embryonic stem cell (ESC) culture conditions, spontaneously form clones that in vitro express pluripotency markers, differentiate to all germ lineages, and in vivo form teratomas and chimeric mice. We demonstrate that BRIGHT binds directly to the promoter/enhancer regions of Oct4, Sox2, and Nanog to contribute to their repression in both MEFs and ESCs. Thus, elimination of the BRIGHT barrier may provide an approach for somatic cell reprogramming.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Reprogramação Celular , Senescência Celular , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Homeodomínio/genética , Antígenos CD15/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcriptoma
11.
Cell Immunol ; 272(2): 175-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22082566

RESUMO

Lethal toxin, a key virulence factor produced by Bacillus anthracis, induces cell death, in part by disrupting numerous signaling pathways, in mouse macrophages. However, exposure to sublethal doses of lethal toxin allows some cells to survive. Because these pro-survival signaling events occur within a few hours after exposure to sublethal doses, we hypothesized that acute phase proteins might influence macrophage survival. Our data show that serum amyloid A (SAA) is produced in response to lethal toxin treatment. Moreover, pre-treatment of macrophages with exogenous SAA protected macrophages from lethal toxin-mediated death. Exogenous SAA activated the p38 mitogen activated protein kinase (MAP) kinase pathway, while lethal toxin mutants incapable of p38 activation were incapable of causing cell death. Chemical inhibition of the p38 activation pathway abrogated the protective effects of SAA. These data show that SAA affords protection against lethal toxin in mouse macrophages and link this response to the p38 pathway.


Assuntos
Toxinas Bacterianas/farmacologia , Macrófagos/efeitos dos fármacos , Proteína Amiloide A Sérica/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação/genética , Substâncias Protetoras/metabolismo , Proteínas Recombinantes/metabolismo , Proteína Amiloide A Sérica/farmacologia , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
12.
Nat Genet ; 43(3): 253-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21336280

RESUMO

Systemic lupus erythematosus (SLE, MIM152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic re-sequencing in ethnically diverse populations, we fully characterized the TNFAIP3 risk haplotype and identified a TT>A polymorphic dinucleotide (deletion T followed by a T to A transversion) associated with SLE in subjects of European (P = 1.58 × 10(-8), odds ratio = 1.70) and Korean (P = 8.33 × 10(-10), odds ratio = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex composed of NF-κB subunits with reduced avidity. Further, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Lúpus Eritematoso Sistêmico/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Sequência de Bases , Proteínas de Ligação a DNA , Feminino , Haplótipos , Humanos , Desequilíbrio de Ligação , Masculino , Dados de Sequência Molecular , Proteína 3 Induzida por Fator de Necrose Tumoral alfa
13.
Mol Cell Biol ; 31(5): 1041-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199920

RESUMO

Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright(-/-) embryos die at midgestation from failed hematopoiesis. Bright(-/-) embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright(-/-) mice is markedly reduced. Rare survivors of lethality, which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b, suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody, B-1 responses to phosphocholine, and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.


Assuntos
Linfócitos B/citologia , Proteínas de Ligação a DNA/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Linfopoese/genética , Fatores de Transcrição/metabolismo , Animais , Anticorpos/sangue , Linfócitos B/metabolismo , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Células-Tronco Hematopoéticas/metabolismo , Switching de Imunoglobulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilcolina/imunologia , Fosforilcolina/metabolismo , Fatores de Transcrição/genética
14.
Stem Cells ; 28(9): 1560-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20680960

RESUMO

B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/deficiência , Animais , Biomarcadores/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes Dominantes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Interferência de RNA , Teratoma/genética , Teratoma/metabolismo , Fatores de Transcrição/genética
15.
EMBO J ; 28(6): 711-24, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19214191

RESUMO

Regulation of BCR signalling strength is crucial for B-cell development and function. Bright is a B-cell-restricted factor that complexes with Bruton's tyrosine kinase (Btk) and its substrate, transcription initiation factor-I (TFII-I), to activate immunoglobulin heavy chain gene transcription in the nucleus. Here we show that a palmitoylated pool of Bright is diverted to lipid rafts of resting B cells where it associates with signalosome components. After BCR ligation, Bright transiently interacts with sumoylation enzymes, blocks calcium flux and phosphorylation of Btk and TFII-I and is then discharged from lipid rafts as a Sumo-I-modified form. The resulting lipid raft concentration of Bright contributes to the signalling threshold of B cells, as their sensitivity to BCR stimulation decreases as the levels of Bright increase. Bright regulates signalling independent of its role in IgH transcription, as shown by specific dominant-negative titration of rafts-specific forms. This study identifies a BCR tuning mechanism in lipid rafts that is regulated by differential post-translational modification of a transcription factor with implications for B-cell tolerance and autoimmunity.


Assuntos
Microdomínios da Membrana/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Antígenos/metabolismo , Linfócitos B/enzimologia , Proteínas de Ligação a DNA , Humanos , Imunoglobulina M/genética , Imunoglobulina M/metabolismo , Lipoilação , Ativação Linfocitária , Microdomínios da Membrana/enzimologia , Camundongos , Mutação/genética , Oncogenes , Fosforilação , Ligação Proteica , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica
16.
J Immunol ; 181(10): 6913-22, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18981111

RESUMO

The transcription factor Bright up-regulates Ig H chain production from select V region promoters and requires Bright dimerization, Bruton's tyrosine kinase (Btk), and the Btk substrate, TFII-I, for this activity. Defects in Btk cause X-linked immunodeficiency disease in mice and humans. Btk-deficient mice exhibit decreased serum IgM production, B cell developmental blocks, absence of peritoneal B1 cells, and subnormal immune responses against Ags, including phosphorylcholine, which confer protection against Streptococcus pneumoniae. Transgenic mice expressing dominant-negative Bright share similarities with Btk-deficient mice, including decreased serum IgM, poor anti-phosphorylcholine responses, and slightly reduced numbers of mature B cells. Although dominant-negative Bright mice developed B1 B cells, these were functionally deficient in Ig secretion. These data suggest a mechanistic explanation for the abnormal responses to phosphorylcholine observed in Btk-deficient mice, and indicate that Bright functions in a subset of Btk-dependent pathways in vivo, particularly those responses dominated by B1 B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Oncogenes/genética , Transativadores/genética , Transativadores/metabolismo , Tirosina Quinase da Agamaglobulinemia , Sequência de Aminoácidos , Animais , Anticorpos/sangue , Antígenos CD19/genética , Western Blotting , Proteínas de Ligação a DNA , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Proteínas Tirosina Quinases , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/imunologia , Fatores de Transcrição
17.
J Immunol ; 178(5): 2996-3006, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17312145

RESUMO

The B cell-restricted transcription factor, B cell regulator of Ig(H) transcription (Bright), up-regulates Ig H chain transcription 3- to 7-fold in activated B cells in vitro. Bright function is dependent upon both active Bruton's tyrosine kinase and its substrate, the transcription factor, TFII-I. In mouse and human B lymphocytes, Bright transcription is down-regulated in mature B cells, and its expression is tightly regulated during B cell differentiation. To determine how Bright expression affects B cell development, transgenic mice were generated that express Bright constitutively in all B lineage cells. These mice exhibited increases in total B220(+) B lymphocyte lineage cells in the bone marrow, but the relative percentages of the individual subpopulations were not altered. Splenic immature transitional B cells were significantly expanded both in total cell numbers and as increased percentages of cells relative to other B cell subpopulations. Serum Ig levels, particularly IgG isotypes, were increased slightly in the Bright-transgenic mice compared with littermate controls. However, immunization studies suggest that responses to all foreign Ags were not increased globally. Moreover, 4-wk-old Bright-transgenic mice produced anti-nuclear Abs. Older animals developed Ab deposits in the kidney glomeruli, but did not succumb to further autoimmune sequelae. These data indicate that enhanced Bright expression results in failure to maintain B cell tolerance and suggest a previously unappreciated role for Bright regulation in immature B cells. Bright is the first B cell-restricted transcription factor demonstrated to induce autoimmunity. Therefore, the Bright transgenics provide a novel model system for future analyses of B cell autoreactivity.


Assuntos
Anticorpos Antinucleares/imunologia , Formação de Anticorpos/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Proteínas de Ligação a DNA/imunologia , Imunoglobulina G/imunologia , Oncogenes/imunologia , Transativadores/imunologia , Animais , Anticorpos Antinucleares/biossíntese , Formação de Anticorpos/genética , Doenças Autoimunes/sangue , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Autoimunidade/genética , Linfócitos B/patologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Regulação para Baixo/imunologia , Expressão Gênica , Glomerulonefrite/sangue , Glomerulonefrite/genética , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Imunoglobulina G/sangue , Antígenos Comuns de Leucócito/imunologia , Camundongos , Camundongos Transgênicos , Oncogenes/genética , Transativadores/biossíntese , Transativadores/genética , Fatores de Transcrição
18.
Mol Cell Biol ; 26(12): 4758-68, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16738337

RESUMO

Bright/ARID3a/Dril1, a member of the ARID family of transcription factors, is expressed in a highly regulated fashion in B lymphocytes, where it enhances immunoglobulin transcription three- to sixfold. Recent publications from our lab indicated that functional, but not kinase-inactive, Bruton's tyrosine kinase (Btk) is critical for Bright activity in an in vitro model system, yet Bright itself is not appreciably tyrosine phosphorylated. These data suggested that a third protein, and Btk substrate, must contribute to Bright-enhanced immunoglobulin transcription. The ubiquitously expressed transcription factor TFII-I was identified as a substrate for Btk several years ago. In this work, we show that TFII-I directly interacts with human Bright through amino acids in Bright's protein interaction domain and that specific tyrosine residues of TFII-I are essential for Bright-induced activity of an immunoglobulin reporter gene. Moreover, inhibition of TFII-I function in a B-cell line resulted in decreased heavy-chain transcript levels. These data suggest that Bright functions as a three-component protein complex in the immunoglobulin locus and tie together previous data indicating important roles for Btk and TFII-I in B lymphocytes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Genes de Imunoglobulinas , Cadeias Pesadas de Imunoglobulinas/genética , Transativadores/metabolismo , Fatores de Transcrição TFII/metabolismo , Tirosina Quinase da Agamaglobulinemia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Mutação , Oncogenes/genética , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/química , Transativadores/genética , Fatores de Transcrição , Fatores de Transcrição TFII/genética , Transcrição Gênica
19.
Mol Cell Biol ; 25(6): 2073-84, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15743806

RESUMO

Bright (B-cell regulator of immunoglobulin heavy chain transcription) binding to immunoglobulin heavy chain loci after B-cell activation is associated with increased heavy chain transcription. Our earlier reports demonstrated that Bright coimmunoprecipitates with Bruton's tyrosine kinase (Btk) and that these proteins associate in a DNA-binding complex in primary B cells. B cells from immunodeficient mice with a mutation in Btk failed to produce stable Bright DNA-binding complexes. In order to determine if Btk is important for Bright function, a transcription activation assay was established and analyzed using real-time PCR technology. Cells lacking both Bright and Btk were transfected with Bright and/or Btk along with an immunoglobulin heavy chain reporter construct. Immunoglobulin gene transcription was enhanced when Bright and Btk were coexpressed. In contrast, neither Bright nor Btk alone led to activation of heavy chain transcription. Furthermore, Bright function required both Btk kinase activity and sequences within the pleckstrin homology domain of Btk. Bright was not appreciably phosphorylated by Btk; however, a third tyrosine-phosphorylated protein coprecipitated with Bright. Thus, the ability of Bright to enhance immunoglobulin transcription critically requires functional Btk.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Cadeias Pesadas de Imunoglobulinas/genética , Oncogenes/fisiologia , Proteínas Tirosina Quinases/fisiologia , Transativadores/fisiologia , Ativação Transcricional/fisiologia , Tirosina Quinase da Agamaglobulinemia , Motivos de Aminoácidos/genética , Animais , Proteínas Sanguíneas/genética , Células CHO , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter/genética , Imunoprecipitação , Linfócitos/metabolismo , Camundongos , Oncogenes/genética , Fosfoproteínas/genética , Fosforilação , Regiões Promotoras Genéticas/genética , Estrutura Terciária de Proteína/genética , Proteínas Tirosina Quinases/genética , Deleção de Sequência/genética , Transativadores/genética , Fatores de Transcrição , Transcrição Gênica/genética , Ativação Transcricional/genética , Transfecção
20.
J Biol Chem ; 279(50): 52465-72, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15456761

RESUMO

Bright, for B cell regulator of immunoglobulin heavy chain transcription, binds A+T-rich sequences in the intronic enhancer regions of the murine heavy chain locus and 5'-flanking sequences of some variable heavy chain promoters. Most resting B cells do not express Bright; however, it is induced after stimulation with antigen or polyclonal mitogens. Bright activation results in up-regulation of mu transcription; however, it is not clear whether Bright function is critical for normal B cell development. To begin to address Bright function during B cell development, seven mutated forms of Bright were produced. Five of the seven mutants revealed little or no DNA binding activity. Furthermore, because Bright binds DNA as a dimer, two of the mutants formed complexes with wild type Bright and acted in a dominant negative fashion. Dominant negative Bright prevented the up-regulation of mu transcription in transfected Chinese hamster ovary cells transfected with wild type Bright. These data identify regions within Bright that are required for the DNA binding activity of Bright and for its function as a transcription factor.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cadeias mu de Imunoglobulina/genética , Oncogenes/genética , Transativadores/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Células CHO , Linhagem Celular , Cricetinae , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/química , Dimerização , Técnicas In Vitro , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transativadores/química , Fatores de Transcrição , Ativação Transcricional , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA