Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Neurobiol Stress ; 26: 100563, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37654512

RESUMO

Postpartum depression (PPD) is a major psychiatric complication of childbirth, affecting up to 20% of mothers, yet remains understudied. Mitochondria, dynamic organelles crucial for cell homeostasis and energy production, share links with many of the proposed mechanisms underlying PPD pathology. Brain mitochondrial function is affected by stress, a major risk factor for development of PPD, and is linked to anxiety-like and social behaviors. Considering the importance of mitochondria in regulating brain function and behavior, we hypothesized that mitochondrial dysfunction is associated with behavioral alterations in a chronic stress-induced rat model of PPD. Using a validated and translationally relevant chronic mild unpredictable stress paradigm during late gestation, we induced PPD-relevant behaviors in adult postpartum Wistar rats. In the mid-postpartum, we measured mitochondrial function in the prefrontal cortex (PFC) and nucleus accumbens (NAc) using high-resolution respirometry. We then measured protein expression of mitochondrial complex proteins and 4-hydroxynonenal (a marker of oxidative stress), and Th1/Th2 cytokine levels in PFC and plasma. We report novel findings that gestational stress decreased mitochondrial function in the PFC, but not the NAc of postpartum dams. However, in groups controlling for the effects of either stress or parity alone, no differences in mitochondrial respiration measured in either brain regions were observed compared to nulliparous controls. This decrease in PFC mitochondrial function in stressed dams was accompanied by negative behavioral consequences in the postpartum, complex-I specific deficits in protein expression, and increased Tumor Necrosis Factor alpha cytokine levels in plasma and PFC. Overall, we report an association between PFC mitochondrial respiration, PPD-relevant behaviors, and inflammation following gestational stress, highlighting a potential role for mitochondrial function in postpartum health.

2.
J Sex Med ; 18(4): 723-731, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33741290

RESUMO

BACKGROUND: Erectile dysfunction (ED) has been shown to be related with inflammatory markers in humans. Chronic infusion of TNF-α caused ED in mice while TNF-α knockout mice exhibited improvement in the relaxation of the corpus cavernosum (CC). AIM: Since obesity triggers an inflammatory process, we aimed to investigate the hypothesis that in obesity, Toll-like receptor 9 (TLR9) activation leads to increased TNF-α levels and impairment in CC reactivity. METHODS: Four-week old male C57BL6 (WT) and TLR9 mutant (TLR9MUT) mice were fed a standard chow or high fat diet (HFD) for 12 weeks. Body weight and nonfasting blood glucose were analyzed. Contractile and relaxation responses of the CC were evaluated by electrical field stimulation and concentration response curves to phenylephrine and acetylcholine. Protein expression of nNOS, TNF-α, TNF-R1, TLR9 and MyD88 were measured by western blot. Plasma levels of TNF-α were measured by ELISA. OUTCOME: In obesity, impaired cavernosal relaxation is associated with the activation of the innate immune system, by increasing the production of TNF-α through the activation of TLR9 in the macrophages. RESULTS: After 12 weeks of HFD both WT and TLR9MUT mice had increased body weight and nonfasting blood glucose compared to standard chow. In the CC, acetylcholine-induced relaxation was not changed. A trend to increased contraction to phenylephrine and KCl was seen in WT HFD only. electrical field stimulation-induced relaxation of the CC was decreased in WT HFD as well as nNOS expression in the CC of WT HFD, but not in TLR9MUT HFD. In the CC, protein expression of TLR9 and MyD88 was similar in all groups. While circulating levels of TNF-α presented only a trend to increase in mice fed HFD, the CC expression of TNF-α was increased only in WT HFD mice. CLINICAL TRANSLATION: The innate immune system can be a target for the treatment of erectile complications in obesity. STRENGTHS AND LIMITATIONS: This is the first study demonstrating that activation of TLR9 expressed in macrophages leads to impaired cavernosal relaxation. The main limitation of the study is the lack of understanding about the source/expression of the macrophages in the cavernous tissue. Further, herein, the experiments were performed only in isolated cavernous tissue (in vitro), thus the lack of knowledge on how the TLR9 modulates the in vivo response of the erectile tissue is another limitation of this study. CONCLUSION: Our findings indicate that CC dysfunction observed in obesity is at least in part mediated by the production of TNF-α upon activation of TLR9 expressed in the macrophages. Priviero F, Calmasini F, Dela Justina V, et al. Macrophage-Specific Toll Like Receptor 9 (TLR9) Causes Corpus Cavernosum Dysfunction in Mice Fed a High Fat Diet. J Sex Med 2021;18:723-731.


Assuntos
Pênis/patologia , Receptor Toll-Like 9 , Animais , Dieta Hiperlipídica/efeitos adversos , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ereção Peniana , Receptor Toll-Like 9/genética
3.
Eur J Pharmacol ; 880: 173133, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32343970

RESUMO

Increased O-Linked ß-N-acetylglucosamine (O-GlcNAc) is observed in several pathologies, and unbalanced O-GlcNAcylation levels favor endothelial dysfunction. Whether augmented O-GlcNAc impacts the uterine artery (UA) function and how it affects the UA during pregnancy remains to be elucidated. We hypothesized that glucosamine treatment increases O-GlcNAc, leading to uterine artery dysfunction and this effect is prevented by pregnancy. Pregnant (P) and non-pregnant (NP) Wistar rats were treated with glucosamine (300 mg/kg; i.p.) for 21 days. Concentration response-curves (CRC) to acetylcholine (in the presence or absence of L-NAME) and sodium nitroprusside were performed in UAs. In NP rats, glucosamine treatment increased O-GlcNAc expression in UAs accompanied by decreased endothelium-dependent relaxation, which was abolished by L-NAME. Endothelial nitric oxide synthase (eNOS) activity and total Akt expression were decreased by glucosamine-treatment in NP rats. Further, NP rats treated with glucosamine displayed increased glycogen synthase kinase 3 beta (GSK3ß) activation and O-GlcNAc-transferase (OGT) expression in the UA. P rats treated with glucosamine displayed decreased O-GlcNAc in UAs and it was accompanied by improved relaxation to acetylcholine, whereas eNOS and GSK3ß activity and total Akt and OGT expression were unchanged. Sodium nitroprusside-induced relaxation was not changed in all groups, indicating that glucosamine treatment led to endothelial dysfunction in NP rats. The underlying mechanism is, at least in part, dependent on Akt/GSK3ß/OGT modulation. We speculate that during pregnancy, hormonal alterations play a protective role in preventing O-GlcNAcylation-induced endothelial dysfunction in the UAs.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Glucosamina/farmacologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Artéria Uterina/efeitos dos fármacos , Animais , Endotélio Vascular/fisiologia , Feminino , N-Acetilglucosaminiltransferases/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Wistar , Artéria Uterina/fisiologia , Vasodilatação/efeitos dos fármacos
5.
Pharmacol Rep ; 72(1): 179-187, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32016843

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is associated with obesity and prostatic inflammation. The present study investigated the participation of toll-like receptor 9 (TLR9) in obesity-induced BPH, focusing on metabolic impairments, damage-associated molecular patterns (DAMP) levels and prostatic oxidative stress generation. METHODS: C57BL/6 (WT) and TLR9 mutant male mice were fed with regular or high-fat diet for 12 weeks. Metabolic profile, functional protocols, reactive-oxygen species (ROS) generation, prostatic histological analysis and DAMP levels were analyzed. Western blotting for prostatic TLR9 signaling pathway was also performed. RESULTS: BPH in WT obese animals was characterized by increased prostate weight, smooth muscle hypercontractility and prostatic epithelial hyperplasia. Higher epididymal fat weight and prostatic ROS generation along with increased fasting glucose, triglyceride and circulating DAMP levels were also observed in WT obese group. Conversely, TLR9 mutant obese animals exhibited lower epididymal fat weight, fasting glucose and triglyceride levels associated with reduced prostate hypercontractility, prostatic ROS and circulating DAMP levels. However, TLR9 mutant obese mice were not protected from obesity-associated prostatic overgrowth and epithelial hyperplasia. Interestingly, TLR9 mutant lean mice exhibited augmented fasting glucose and prostatic ROS levels compared with WT lean mice. Despite increased prostatic expression of TLR9 in WT obese mice, no differences were seen in MyD88 expression between groups. CONCLUSION: Improved obesity-induced BPH-related prostatic smooth muscle hypercontractility in TLR9 obese mice may be associated with amelioration in the metabolic profile, ROS and DAMP generation. Therefore, TLR9 could be a valuable target to improve obesity-associated metabolic disorders and prostate smooth muscle hypercontractility in BPH.


Assuntos
Obesidade/complicações , Estresse Oxidativo/fisiologia , Hiperplasia Prostática/fisiopatologia , Receptor Toll-Like 9/genética , Alarminas/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/fisiologia , Músculo Liso/metabolismo , Hiperplasia Prostática/etiologia , Hiperplasia Prostática/genética , Espécies Reativas de Oxigênio/metabolismo
6.
Braz J Med Biol Res ; 52(6): e8132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141088

RESUMO

The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-ß/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.


Assuntos
Curcuma/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leiomioma/tratamento farmacológico , Extratos Vegetais/farmacologia , Rizoma/química , Neoplasias Uterinas/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Leiomioma/genética , Leiomioma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Radioimunoensaio , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo
7.
Pharmacol Res ; 141: 276-290, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30639374

RESUMO

Several human diseases, include cancer and stroke are characterized by changes in immune system activation and vascular contractility. However, the mechanistic foundation of a vascular immuno-physiology network is still largely unknown. Formyl peptide receptor-1 (FPR-1), which plays a vital role in the function of the innate immune system, is widely expressed in arteries, but its role in vascular plasticity is unclear. We questioned why a receptor that is crucial for immune defense, and cell motility in leukocytes, would be expressed in vascular smooth muscle cells (VSMCs). We hypothesized that activation of FPR-1 in arteries is important for the temporal reorganization of actin filaments, and consequently, changes in vascular function, similar to what is observed in neutrophils. To address our hypothesis, we used FPR-1 knockout and VSMCs lacking FPR-1. We observed that FPR-1 activation induces actin polymerization in wild type VSMCs. Absence of FPR-1 in the vasculature significantly decreased vascular contraction and induced loss of myogenic tone to elevated intraluminal pressures via disruption of actin polymerization. Actin polymerization activator ameliorated these responses. In conclusion, we have established a novel role for FPR-1 in VSMC contractility and motility, similar to the one observed in sentinel cells of the innate immune system. This discovery is fundamental for vascular immuno-pathophysiology, given that FPR-1 in VSMCs not only functions as an immune system receptor, but it also has an important role for the dynamic plasticity of arteries.


Assuntos
Actinas/metabolismo , Artérias/fisiologia , Contração Muscular , Músculo Liso Vascular/fisiologia , Receptores de Formil Peptídeo/metabolismo , Animais , Artérias/citologia , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Receptores de Formil Peptídeo/genética
8.
Steroids ; 141: 46-54, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458188

RESUMO

Conjugated equine estrogens (CEE) have been widely used by women who seek to relieve symptoms of menopause. Despite evidence describing protective effects against risk factors for cardiovascular diseases by naturally occurring estrogens, little is known about the vascular effects of equilin, one of the main components of CEE and not physiologically present in women. In this regard, the present study aims to compare the vascular effects of equilin in an experimental model of hypertension with those induced by 17ß-estradiol. Resistance mesenteric arteries from female spontaneously hypertensive rats (SHR) were used for recording isometric tension in a small vessel myograph. As effectively as 17ß-estradiol, equilin evoked a concentration-dependent relaxation in mesenteric arteries from female SHRs contracted with KCl, U46619, PDBu or ET-1. Equilin-induced vasodilation does not involve classical estrogen receptor activation, since the estrogen receptor antagonist (ICI 182,780) failed to inhibit relaxation in U46619-precontracted mesenteric arteries. Vasorelaxation was not affected by either endothelium removal or by inhibiting the release or action of endothelium-derived factors. Incubation with L-NAME (NOS inhibitor), ODQ (guanylyl cyclase inhibitor) or KT5823 (inhibitor of protein kinase G) did not affect equilin-induced relaxation. Similarly, indomethacin (COX inhibitor) or blockage of potassium channels with tetraethylammonium, glibenclamide, 4-aminopyridine, or ouabain did not affect equilin-induced relaxation. Inhibitors of adenylyl cyclase SQ22536 or protein kinase A (KT5720) also had no effects on equilin-induced relaxation. While 17ß-estradiol inhibited calcium (Ca2+) -induced contractions in high-K+ depolarization medium in a concentration-dependent manner, equilin induced a slight rightward-shift in the contractile responses to Ca2+. Comparable pattern of responses were observed in the concentration-response curves to (S)-(-)-Bay K 8644, a L-type Ca2+ channel activator. Equilin was unable to block the transitory contraction produced by caffeine-induced Ca2+ release from intracellular stores. In conclusion, equilin blocks L-type Ca2+ channels less effectively than 17ß-estradiol. Despite its lower effectiveness, equilin equally relaxes resistance mesenteric arteries by blocking Ca2+ entry on smooth muscle.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Equilina/farmacologia , Estradiol/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Retículo Endoplasmático/metabolismo , Feminino , Ratos , Ratos Endogâmicos SHR
9.
Braz. j. med. biol. res ; 52(6): e8132, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001537

RESUMO

The aim of this study was to elucidate the concise effects of a traditional herb pair, Curcumae rhizoma-Sparganii rhizoma (CRSR), on uterine leiomyoma (UL) by analyzing transcriptional profiling. The UL rat model was made by intramuscular injection of progesterone and gavage administration of diethylstilbestrol. From 11 weeks of the establishment of the model, rats of the UL+CRSR group were gavaged daily with CRSR (6.67 g/kg). The serum concentrations of progesterone (P) and estradiol (E2) were determined by radioimmunoassay, the uterine index was measured by caliper measurement, and the pathological status was observed by hematoxylin and eosin stain. Gene expression profiling was checked by NimbleGen Rat Gene Expression Microarrays. The results indicated that the uterine mass of UL+CRSR rats was significantly shrunk and serum P and E2 levels significantly reduced compared to UL animals and nearly to the level of normal rats. Results of microarrays displayed the extensive inhibition of CRSR upon the expression of proliferation and deposition of extracellular matrix (ECM)-related genes, and significantly regulated a wide range of metabolism disorders. Furthermore, CRSR extensively regulated key pathways of the UL process, such as MAPK, PPAR, Notch, and TGF-β/Smad. Regulation of the crucial pathways for the UL process and ECM metabolism may be the underlying mechanisms of CRSR treatment. Further studies will provide clear clues for effectively treating UL with CRSR.


Assuntos
Animais , Feminino , Ratos , Neoplasias Uterinas/tratamento farmacológico , Extratos Vegetais/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Curcuma/química , Rizoma/química , Leiomioma/tratamento farmacológico , Fatores de Transcrição , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Radioimunoensaio , Ratos Sprague-Dawley , Análise de Sequência com Séries de Oligonucleotídeos , Modelos Animais de Doenças , Leiomioma/genética , Leiomioma/metabolismo
10.
Front Surg ; 5: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564582

RESUMO

Diabetic bladder dysfunction (DBD) is a well-recognized and common symptom affecting up to 50% of all diabetic patients. DBD has a broad range of clinical presentations ranging from overactive to underactive bladder symptoms that develops in middle-aged to elderly patients with long standing and poorly controlled diabetes. Low efficacy of current therapeutics and lifestyle interventions combined with high national healthcare costs highlight the need for more research into bladder dysfunction pathophysiology and novel treatment options. Cellular senescence is an age-related physiologic process in which cells undergo irreversible growth arrest induced by replicative exhaustion and damaging insults. While controlled senescence negatively regulates cell proliferation and promotes tissue regeneration, uncontrolled senescence is known to result in tissue dysfunction through enhanced secretion of inflammatory factors. This review presents previous scientific findings and current hypotheses that characterize diabetic bladder dysfunction. Further, we propose the novel hypothesis that cellular senescence within the urothelial layer of the bladder contributes to the pro-inflammatory/pro-oxidant environment and symptoms of diabetic bladder dysfunction. Our results show increased cellular senescence in the urothelial layer of the bladder; however, whether this phenomenon is the cause or effect of DBD is unknown. The urothelial layer of the bladder is made up of transitional epithelia specialized to contract and expand with demand and plays an active role in transmission by modulating afferent activity. Transition from normal functioning urothelial cells to secretory senescence cells would not only disrupt the barrier function of this layer but may result in altered signaling and sensation of bladder fullness; dysfunction of this layer is known to result in symptoms of frequency and urgency. Future DBD therapeutics may benefit from targeting and preventing early transition of urothelial cells to senescent cells.

11.
Braz J Med Biol Res ; 51(9): e7627, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29972430

RESUMO

Uterine leiomyomas (ULs) are benign monoclonal tumors that arise from the underlying myometrial tissue in the uterus. Effective therapies are still lacking because of poor understanding of the pathophysiology and epidemiology. Hence, it is urgent to establish efficient animal models to screen novel anti-UL therapies. In this study, for the first time, traditional Chinese medicine and Western medicine were combined to establish an animal model of ULs in rats. In order to evaluate the function and value of the novel model, it was compared with other models. The long-term and short-term rat models for ULs were established using progesterone and diethylstilbestrol. Rats in Qi stagnation and blood stasis group were injected with epinephrine hydrochloride and received chronic unpredictable stress for two weeks. Rats in combining disease with syndrome group (CDWSG) received not only epinephrine hydrochloride injection and chronic unpredictable stress but also progesterone and diethylstilbestrol treatment. We analyzed differences in organ coefficient, uterus size, uterine pathology, concentrations of progesterone, estradiol, progesterone receptor, estrogen receptor, expression of desmin, α-smooth muscle actin, and vimentin among the five groups. The animal model of ULs was successfully constructed by loading the rats with estrogen and progesterone. The rat model of CDWSG was more stable than other groups and the method was the most efficient.


Assuntos
Modelos Animais de Doenças , Leiomioma/induzido quimicamente , Medicina Tradicional Chinesa , Neoplasias Uterinas/induzido quimicamente , Animais , Dietilestilbestrol/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Epinefrina/administração & dosagem , Feminino , Imuno-Histoquímica , Progesterona/administração & dosagem , Ratos , Ratos Sprague-Dawley
12.
Can J Physiol Pharmacol ; 96(8): 719-727, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29430946

RESUMO

The endothelium is crucial for the maintenance of vascular tone by releasing several vasoactive substances, including nitric oxide (NO). Systemic mean arterial pressure is primarily regulated by the resistance vasculature, which has been shown to exhibit increased vascular reactivity, and decreased vasorelaxation during hypertension. Here, we aimed to determine the mechanism for mesenteric artery vasorelaxation of the stroke-prone spontaneously hypertensive rat (SHRSP). We hypothesized that endothelial NO synthase (eNOS) is upregulated in SHRSP vessels, increasing NO production to compensate for the endothelial dysfunction. Concentration-response curves to acetylcholine (ACh) were performed in second-order mesenteric arteries; we observed decreased relaxation responses to ACh (maximum effect elicited by the agonist) as compared with Wistar-Kyoto (WKY) controls. Vessels from SHRSP incubated with Nω-nitro-l-arginine methyl ester and (or) indomethacin exhibited decreased ACh-mediated relaxation, suggesting a primary role for NO-dependent relaxation. Vessels from SHRSP exhibited a significantly decreased relaxation response with inducible NO synthase (iNOS) inhibition, as compared with WKY vessels. Western blot analysis showed increased total phosphorylated NF-κB, and phosphorylated and total eNOS in SHRSP vessels. Overall, these data suggest a compensatory role for NO by increased eNOS activation. Moreover, we believe that iNOS, although increasing NO bioavailability to compensate for decreased relaxation, leads to a cycle of further endothelial dysfunction in SHRSP mesenteric arteries.


Assuntos
Artérias Mesentéricas/patologia , Artérias Mesentéricas/fisiopatologia , Óxido Nítrico/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia , Vasodilatação , Acetilcolina/farmacologia , Animais , Arginase/antagonistas & inibidores , Arginase/metabolismo , Arginina/farmacologia , Pressão Sanguínea , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Masculino , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Endogâmicos SHR , Especificidade por Substrato/efeitos dos fármacos , Sístole , Vasodilatação/efeitos dos fármacos
13.
Ther Adv Cardiovasc Dis ; 11(11): 297-317, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28911261

RESUMO

Cardio-oncology is a new and rapidly expanding field that merges cancer and cardiovascular disease. Cardiovascular disease is an omnipresent side effect of cancer therapy; in fact, it is the second leading cause of death in cancer survivors after recurrent cancer. It has been well documented that many cancer chemotherapeutic agents cause cardiovascular toxicity. Nonetheless, the underlying cause of cancer therapy-induced cardiovascular toxicity is largely unknown. In this review, we discuss the potential role of damage-associated molecular patterns (DAMPs) as an underlying contributor to cancer therapy-induced cardiovascular toxicity. With an increasing number of cancer patients, as well as extended life expectancy, understanding the mechanisms underlying cancer therapy-induced cardiovascular disease is of the utmost importance to ensure that cancer is the only disease burden that cancer survivors have to endure.


Assuntos
Alarminas/metabolismo , Antineoplásicos/efeitos adversos , Doenças Cardiovasculares/induzido quimicamente , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/efeitos da radiação , Neoplasias/terapia , Lesões por Radiação/etiologia , Animais , Cardiotoxicidade , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Humanos , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/fisiopatologia , Radioterapia/efeitos adversos , Medição de Risco , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
14.
J Trauma Acute Care Surg ; 83(6): 1062-1065, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28806285

RESUMO

BACKGROUND: Mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA and N-formylated peptides, are endogenous molecules released from tissue after traumatic injury. mtDAMPs are potent activators of the innate immune system. They have similarities with bacteria, which allow mtDAMPs to interact with the same pattern recognition receptors and mediate the development of systemic inflammatory response syndrome (SIRS). Current recommendations for management of an open abdomen include returning to the operating room every 48 hours for peritoneal cavity lavage until definitive procedure. These patients are often critically ill and develop SIRS. We hypothesized that mitochondrial DAMPs are present in the peritoneal cavity fluid in this setting, and that they accumulate in the interval between washouts. METHODS: We conducted a prospective pilot study of critically ill adult patients undergoing open abdomen management in the surgical and trauma intensive care units. Peritoneal fluid was collected daily from 10 open abdomen patients. Specimens were analyzed via quantitative polymerase chain reaction (qPCR) for mitochondrial DNA (mtDNA), via enzyme immunoassay for DNAse activity and via Western blot analysis for the ND6 subunit of the NADH: ubiquinone oxidoreductase, an N-formylated peptide. RESULTS: We observed a reduction in the expression of ND6 the day after lavage of the peritoneal cavity, that was statistically different from the days with no lavage (% change in ND6 expression, postoperative from washout: -50 ± 11 vs. no washout day, 42 ± 9; p < 0.05). Contrary to expectation, the mtDNA levels remained relatively constant from sample to sample. We then hypothesized that DNAse present in the effluent may be degrading mtDNA. CONCLUSION: These results indicate that the peritoneal cavity irrigation reduces the presence of mitochondrial DAMPs in the open abdomen. It is possible that increased frequency of peritoneal cavity lavage may lead to decreased systemic absorption of mtDAMPs, thereby reducing the risk of SIRS. LEVEL OF EVIDENCE: Prospective study, Case Series, Level V.


Assuntos
Traumatismos Abdominais/genética , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Mitofagia , Lavagem Peritoneal/métodos , Traumatismos Abdominais/metabolismo , Traumatismos Abdominais/terapia , Adulto , DNA Mitocondrial/metabolismo , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos
15.
Curr Vasc Pharmacol ; 16(1): 93-101, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28745215

RESUMO

AIMS: Nitroxyl anion (HNO) has recently become an emerging candidate in vascular regulation. NO- is a potent vasodilator of both conduit and small resistance vessels and mediates relaxation in a soluble guanylate cyclase-dependent manner. Interestingly, HNO activates voltage-dependent K+ (K+ V) channels, whereas Nitric Oxide (NO) activates calcium-activated K+ Ca channels. To date, there are few studies investigating the role of HNO in hypertension, and the possible mechanisms, which may be altered during this condition. We hypothesized that mesenteric arteries from angiotensin II-induced (AngII) hypertensive mice would exhibit an increased dependence upon NO- for relaxation, which may be mediated through K+ V channels. Methods and Key Results: C57/Bl6 mice, aged 12-14 weeks were implanted with mini-pumps containing angiotensin II (AngII, 3600ng/kg/min) for 14 days. For this study, we proposed to investigate the role of HNO in the resistance vasculature, and so first order mesenteric arteries were isolated and used in functional studies, or were frozen for Western blot analysis. We observed that mesenteric arteries from AngII mice (AngII) exhibited a decrease in HNO-mediated relaxation, which was endotheliumindependent. With HNO scavenging by L-cysteine [3mM], the maximal acetylcholine (ACh)-mediated relaxation response was decreased in sham, whereas mesenteric arteries from AngII exhibited a decrease in sensitivity. Incubation with the K+ V channel inhibitor, 4-aminopyridine [1mM], decreased AChmediated relaxation responses in sham, but almost completely abolished relaxation in AngII. CONCLUSION: We reveal that exogenous HNO-mediated relaxation, via Angeli's Salt, is impaired in mesenteric arteries from AngII-treated mice, yet endogenous HNO-mediated relaxation may be more important during hypertension.


Assuntos
Hipertensão/fisiopatologia , Artérias Mesentéricas/metabolismo , Óxidos de Nitrogênio/administração & dosagem , Vasodilatação/fisiologia , 4-Aminopiridina/farmacologia , Acetilcolina/farmacologia , Angiotensina II/administração & dosagem , Animais , Modelos Animais de Doenças , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Nitritos/farmacologia , Óxidos de Nitrogênio/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
16.
Pulm Pharmacol Ther ; 37: 49-56, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26923940

RESUMO

Respiratory failure is a common characteristic of systemic inflammatory response syndrome (SIRS) and sepsis. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns (DAMPs). Mitochondrial N-formyl peptides (F-MITs) are DAMPs that share similarities with bacterial N-formylated peptides, and are potent immune system activators. Recently, we observed that hemorrhagic shock-induced increases in plasma levels of F-MITs associated with lung damage, and that antagonism of formyl peptide receptors (FPR) ameliorated hemorrhagic shock-induced lung injury in rats. Corroborating these data, in the present study, it was observed that F-MITs expression is higher in plasma samples from trauma patients with SIRS or sepsis when compared to control trauma group. Therefore, to better understand the role of F-MITs in the regulation of lung and airway function, we studied the hypothesis that F-MITs lead to airway contraction and lung inflammation. We observed that F-MITs induced concentration-dependent contraction in trachea, bronchi and bronchioles. However, pre-treatment with mast cells degranulator or FPR antagonist decreased this response. Finally, intratracheal challenge with F-MITs increased neutrophil elastase expression in lung and inducible nitric oxide synthase and cell division control protein 42 expression in all airway segments. These data suggest that F-MITs could be a putative target to treat respiratory failure in trauma patients.


Assuntos
Mitocôndrias/metabolismo , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Infiltração de Neutrófilos/fisiologia , Receptores de Formil Peptídeo/metabolismo , Adolescente , Adulto , Animais , Humanos , Lesão Pulmonar/fisiopatologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Neutrófilos/metabolismo , Ratos , Ratos Wistar , Insuficiência Respiratória/fisiopatologia , Sepse/fisiopatologia , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Adulto Jovem
17.
Pharmacol Rev ; 68(1): 142-67, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26721702

RESUMO

Toll-like receptors (TLRs) are components of the innate immune system that respond to exogenous infectious ligands (pathogen-associated molecular patterns, PAMPs) and endogenous molecules that are released during host tissue injury/death (damage-associated molecular patterns, DAMPs). Interaction of TLRs with their ligands leads to activation of downstream signaling pathways that induce an immune response by producing inflammatory cytokines, type I interferons (IFN), and other inflammatory mediators. TLR activation affects vascular function and remodeling, and these molecular events prime antigen-specific adaptive immune responses. Despite the presence of TLRs in vascular cells, the exact mechanisms whereby TLR signaling affects the function of vascular tissues are largely unknown. Cardiovascular diseases are considered chronic inflammatory conditions, and accumulating data show that TLRs and the innate immune system play a determinant role in the initiation and development of cardiovascular diseases. This evidence unfolds a possibility that targeting TLRs and the innate immune system may be a novel therapeutic goal for these conditions. TLR inhibitors and agonists are already in clinical trials for inflammatory conditions such as asthma, cancer, and autoimmune diseases, but their study in the context of cardiovascular diseases is in its infancy. In this article, we review the current knowledge of TLR signaling in the cardiovascular system with an emphasis on atherosclerosis, hypertension, and cerebrovascular injury. Furthermore, we address the therapeutic potential of TLR as pharmacological targets in cardiovascular disease and consider intriguing research questions for future study.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Receptores Toll-Like/imunologia , Aterosclerose/fisiopatologia , Humanos , Hipertensão/fisiopatologia , Mediadores da Inflamação/metabolismo , Ligantes , Moléculas com Motivos Associados a Patógenos/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/fisiopatologia
18.
Placenta ; 36(10): 1204-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282853

RESUMO

Toll-like receptor (TLR)-regulated protein kinases and inflammatory cytokines were activated in fetal vascular smooth muscle cells (VSMC) treated with palmitate. Tumor necrosis factor (TNFα) and interleukin-6 (IL6) were increased and correlated with expression of TLRs in the labyrinth placentae of high fat (HF)-fed rats with increased plasma lipids and visceral adiposity. Thus, local induction of TLR signaling via saturated fatty acids (SFA) may in part contribute to placental inflammation in diet-induced maternal obesity.


Assuntos
Obesidade/metabolismo , Placenta/metabolismo , Complicações na Gravidez/metabolismo , Receptores Toll-Like/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-6/metabolismo , Miócitos de Músculo Liso/metabolismo , Obesidade/etiologia , Palmitatos/efeitos adversos , Gravidez , Complicações na Gravidez/etiologia , Distribuição Aleatória , Ratos , Fator de Necrose Tumoral alfa/metabolismo
19.
Curr Drug Targets ; 16(5): 427-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25915483

RESUMO

INTRODUCTION: Erectile dysfunction (ED) has reached epidemic proportions not expected to abate because of population aging and chronic diseases that accompany advanced age. Vasculopathy is a main cause, but damage to penile innervation also underlies many cases of ED. Phosphodiesterase inhibitor therapies do not help all men with ED, making the search for novel therapeutic drug and treatment targets of utmost importance. AIMS: To review the literature to identify potential new treatment targets to fill a gap in therapeutic options for men with ED, with a focus on treatments for vasculogenic ED, but including novel treatment targets for ED due to penile nerve damage, a frequent consequence of pelvic surgery in men. METHODS: The recent literature was searched for publications on in vitro, in vivo, pre-clinical and observational human studies, when available, that would identify potential new targets for ED therapies not previously, or not extensively reviewed. RESULTS: Literature searches identified microparticles, myeloperoxidase, and heme oxygenase-1 as emerging molecular targets to treat vasculogenic ED. Novel regenerative therapy targets, including sonic hedgehog, galanin, and cell-based treatments were also reviewed as potential future treatments for ED due to damage to penile innervation. CONCLUSION: Novel molecular targets and cell-based therapies offer great hope for advances in ED treatment. Concerns regarding efficacy, toxicity, off target effects, safety, and convenience apply to these targets; much work remains to confirm these as viable targets to pursue for effective ED treatments. To complement targets discussed in this review relevant review papers were cited for the interested reader. To complement targets discussed in this review relevant review papers were cited for the interested reader.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Disfunção Erétil/terapia , Terapia de Alvo Molecular/métodos , Disfunção Erétil/metabolismo , Galanina/uso terapêutico , Heme Oxigenase-1/antagonistas & inibidores , Humanos , Masculino , Peroxidase/antagonistas & inibidores , Medicina Regenerativa
20.
Am J Physiol Heart Circ Physiol ; 308(7): H768-77, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25637548

RESUMO

Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse.


Assuntos
Proteínas Mitocondriais/toxicidade , Oligopeptídeos/toxicidade , Sepse/induzido quimicamente , Choque/induzido quimicamente , Animais , Basófilos/efeitos dos fármacos , Basófilos/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Relação Dose-Resposta a Droga , Febre/induzido quimicamente , Febre/metabolismo , Febre/fisiopatologia , Liberação de Histamina/efeitos dos fármacos , Hipotensão/induzido quimicamente , Hipotensão/metabolismo , Hipotensão/fisiopatologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar , Receptores de Formil Peptídeo/agonistas , Receptores de Formil Peptídeo/metabolismo , Sepse/metabolismo , Sepse/fisiopatologia , Choque/metabolismo , Choque/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA