Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 381(6659): eadd7564, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37590359

RESUMO

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Assuntos
Desenvolvimento Embrionário , Saco Vitelino , Feminino , Humanos , Gravidez , Coagulação Sanguínea/genética , Macrófagos , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Desenvolvimento Embrionário/genética , Atlas como Assunto , Expressão Gênica , Perfilação da Expressão Gênica , Hematopoese/genética , Fígado/embriologia
2.
Eur J Immunol ; 53(12): e2250222, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36826421

RESUMO

Single-cell RNA sequencing technologies have successfully been leveraged for immunological insights into human prenatal, pediatric, and adult tissues. These single-cell studies have led to breakthroughs in our understanding of stem, myeloid, and lymphoid cell function. Computational analysis of fetal hematopoietic tissues has uncovered trajectories for T- and B-cell differentiation across multiple organ sites, and how these trajectories might be dysregulated in fetal and pediatric health and disease. As we enter the age of large-scale, multiomic, and integrative single-cell meta-analysis, we assess the advances and challenges of large-scale data generation, analysis, and reanalysis, and data dissemination for a broad range of scientific and clinical communities. We discuss Findable, Accessible, Interoperable, and Reusable data sharing and unified cell ontology languages as strategic areas for progress of the field in the near future. We also reflect on the trend toward deployment of multiomic and spatial genomic platforms within single-cell RNA sequencing projects, and the crucial role these data types will assume in the immediate future toward creation of comprehensive and rich single-cell atlases. We demonstrate using our recent studies of human prenatal and adult hematopoietic tissues the importance of interdisciplinary and collaborative working in science to reveal biological insights in parallel with technological and computational innovations.


Assuntos
Genômica , Longevidade , Criança , Humanos , Hematopoese , Análise de Sequência de RNA , Análise de Célula Única
3.
Nat Med ; 28(4): 743-751, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35288693

RESUMO

KMT2A-rearranged infant ALL is an aggressive childhood leukemia with poor prognosis. Here, we investigated the developmental state of KMT2A-rearranged infant B-cell acute lymphoblastic leukemia (B-ALL) using bulk messenger RNA (mRNA) meta-analysis and examination of single lymphoblast transcriptomes against a developing bone marrow reference. KMT2A-rearranged infant B-ALL was uniquely dominated by an early lymphocyte precursor (ELP) state, whereas less adverse NUTM1-rearranged infant ALL demonstrated signals of later developing B cells, in line with most other childhood B-ALLs. We compared infant lymphoblasts with ELP cells and revealed that the cancer harbored hybrid myeloid-lymphoid features, including nonphysiological antigen combinations potentially targetable to achieve cancer specificity. We validated surface coexpression of exemplar combinations by flow cytometry. Through analysis of shared mutations in separate leukemias from a child with infant KMT2A-rearranged B-ALL relapsing as AML, we established that KMT2A rearrangement occurred in very early development, before hematopoietic specification, emphasizing that cell of origin cannot be inferred from the transcriptional state.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transcriptoma , Medula Óssea/metabolismo , Criança , Rearranjo Gênico/genética , Humanos , Lactente , Mutação/genética , Proteína de Leucina Linfoide-Mieloide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transcriptoma/genética
4.
Nature ; 598(7880): 327-331, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34588693

RESUMO

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Assuntos
Células da Medula Óssea/citologia , Medula Óssea , Síndrome de Down/sangue , Síndrome de Down/imunologia , Feto/citologia , Hematopoese , Sistema Imunitário/citologia , Linfócitos B/citologia , Células Dendríticas/citologia , Síndrome de Down/metabolismo , Síndrome de Down/patologia , Células Endoteliais/patologia , Eosinófilos/citologia , Células Eritroides/citologia , Granulócitos/citologia , Humanos , Imunidade , Células Mieloides/citologia , Células Estromais/citologia
5.
Nature ; 597(7875): 196-205, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497388

RESUMO

The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development.


Assuntos
Movimento Celular , Rastreamento de Células , Células/citologia , Biologia do Desenvolvimento/métodos , Embrião de Mamíferos/citologia , Feto/citologia , Disseminação de Informação , Organogênese , Adulto , Animais , Atlas como Assunto , Técnicas de Cultura de Células , Sobrevivência Celular , Visualização de Dados , Feminino , Humanos , Imageamento Tridimensional , Masculino , Modelos Animais , Organogênese/genética , Organoides/citologia , Células-Tronco/citologia
6.
Cell ; 184(15): 4090-4104.e15, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34129837

RESUMO

The oral mucosa remains an understudied barrier tissue. This is a site of rich exposure to antigens and commensals, and a tissue susceptible to one of the most prevalent human inflammatory diseases, periodontitis. To aid in understanding tissue-specific pathophysiology, we compile a single-cell transcriptome atlas of human oral mucosa in healthy individuals and patients with periodontitis. We uncover the complex cellular landscape of oral mucosal tissues and identify epithelial and stromal cell populations with inflammatory signatures that promote antimicrobial defenses and neutrophil recruitment. Our findings link exaggerated stromal cell responsiveness with enhanced neutrophil and leukocyte infiltration in periodontitis. Our work provides a resource characterizing the role of tissue stroma in regulating mucosal tissue homeostasis and disease pathogenesis.


Assuntos
Imunidade nas Mucosas , Mucosa Bucal/citologia , Mucosa Bucal/imunologia , Neutrófilos/citologia , Adulto , Células Epiteliais/citologia , Regulação da Expressão Gênica , Predisposição Genética para Doença , Gengiva/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Microbiota , Células Mieloides/citologia , Periodontite/genética , Periodontite/imunologia , Periodontite/patologia , Análise de Célula Única , Células Estromais/citologia , Linfócitos T/citologia
7.
Nat Med ; 27(5): 904-916, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33879890

RESUMO

Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy.


Assuntos
COVID-19/imunologia , Proteoma , SARS-CoV-2/imunologia , Análise de Célula Única/métodos , Transcriptoma , Estudos Transversais , Humanos , Monócitos/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA