Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Age Ageing ; 53(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38783755

RESUMO

BACKGROUND: Patients with congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD) and dementia are underrepresented in specialist palliative home care (SPHC). However, the complexity of their conditions requires collaboration between general practitioners (GPs) and SPHC teams and timely integration into SPHC to effectively meet their needs. OBJECTIVE: To facilitate joint palliative care planning and the timely transfer of patients with advanced chronic non-malignant conditions to SPHC. METHODS: A two-arm, unblinded, cluster-randomised controlled trial. 49 GP practices in northern Germany were randomised using web-based block randomisation. We included patients with advanced CHF, COPD and/or dementia. The KOPAL intervention consisted of a SPHC nurse-patient consultation followed by an interprofessional telephone case conference between SPHC team and GP. The primary outcome was the number of hospital admissions 48 weeks after baseline. Secondary analyses examined the effects on health-related quality of life and self-rated health status, as measured by the EuroQol 5D scale. RESULTS: A total of 172 patients were included in the analyses. 80.4% of GP practices had worked with SHPC before, most of them exclusively for cancer patients. At baseline, patients reported a mean EQ-VAS of 48.4, a mean quality of life index (EQ-5D-5L) of 0.63 and an average of 0.80 hospital admissions in the previous year. The intervention did not significantly reduce hospital admissions (incidence rate ratio = 0.79, 95%CI: [0.49, 1.26], P = 0.31) or the number of days spent in hospital (incidence rate ratio = 0.65, 95%CI: [0.28, 1.49], P = 0.29). There was also no significant effect on quality of life (∆ = -0.02, 95%CI: [-0.09, 0.05], P = 0.53) or self-rated health (∆ = -2.48, 95%CI: [-9.95, 4.99], P = 0.51). CONCLUSIONS: The study did not show the hypothesised effect on hospitalisations and health-related quality of life. Future research should focus on refining this approach, with particular emphasis on optimising the timing of case conferences and implementing discussed changes to treatment plans, to improve collaboration between GPs and SPHC teams.


Assuntos
Insuficiência Cardíaca , Cuidados Paliativos , Atenção Primária à Saúde , Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Humanos , Cuidados Paliativos/métodos , Masculino , Feminino , Idoso , Alemanha , Doença Pulmonar Obstrutiva Crônica/terapia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Idoso de 80 Anos ou mais , Insuficiência Cardíaca/terapia , Insuficiência Cardíaca/diagnóstico , Demência/terapia , Doença Crônica , Serviços de Assistência Domiciliar , Equipe de Assistência ao Paciente , Fatores de Tempo , Comunicação Interdisciplinar , Prestação Integrada de Cuidados de Saúde/organização & administração
2.
Cells ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786015

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) play an important role in neurodevelopment, immune defence and cancer; however, their role throughout viral infections is mostly unexplored. We have been searching for specific aGPCRs involved in SARS-CoV-2 infection of mammalian cells. In the present study, we infected human epithelial cell lines derived from lung adenocarcinoma (Calu-3) and colorectal carcinoma (Caco-2) with SARS-CoV-2 in order to analyse changes in the level of mRNA encoding individual aGPCRs at 6 and 12 h post infection. Based on significantly altered mRNA levels, we identified four aGPCR candidates-ADGRB3/BAI3, ADGRD1/GPR133, ADGRG7/GPR128 and ADGRV1/GPR98. Of these receptors, ADGRD1/GPR133 and ADGRG7/GPR128 showed the largest increase in mRNA levels in SARS-CoV-2-infected Calu-3 cells, whereas no increase was observed with heat-inactivated SARS-CoV-2 and virus-cleared conditioned media. Next, using specific siRNA, we downregulated the aGPCR candidates and analysed SARS-CoV-2 entry, replication and infectivity in both cell lines. We observed a significant decrease in the amount of SARS-CoV-2 newly released into the culture media by cells with downregulated ADGRD1/GPR133 and ADGRG7/GPR128. In addition, using a plaque assay, we observed a reduction in SARS-CoV-2 infectivity in Calu-3 cells. In summary, our data suggest that selected aGPCRs might play a role during SARS-CoV-2 infection of mammalian cells.


Assuntos
Adenocarcinoma de Pulmão , COVID-19 , RNA Mensageiro , Receptores Acoplados a Proteínas G , SARS-CoV-2 , Regulação para Cima , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , SARS-CoV-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , COVID-19/genética , COVID-19/virologia , COVID-19/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/virologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Regulação para Cima/genética , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Células CACO-2
3.
Nature ; 627(8005): 880-889, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480884

RESUMO

The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.


Assuntos
Evolução Molecular , Imunoterapia , Neoplasias Pulmonares , Platina , Carcinoma de Pequenas Células do Pulmão , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Clonais/efeitos dos fármacos , Células Clonais/metabolismo , Células Clonais/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Platina/farmacologia , Platina/uso terapêutico , Recidiva , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/terapia
4.
Front Cardiovasc Med ; 11: 1328378, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440207

RESUMO

Introduction: Immune checkpoint inhibitors have advanced the outcomes of many different types of cancer. A rare but extraordinarily severe complication of these agents resembles immune checkpoint inhibitor-related myocarditis, which typically occurs within the first few weeks after treatment initiation with a mortality of 25%-50%. Case report: A 57-year-old woman had uneventfully received pembrolizumab for metastatic non-small cell lung cancer for over 2.5 years and was admitted after an out-of-hospital cardiac arrest due to ventricular fibrillation. After successful cardiopulmonary resuscitation, the initial diagnostic work-up showed elevated cardiac enzymes and a limited left-ventricular ejection fraction, while coronary angiography did not show relevant stenosis. Despite cardiac MRI being unsuggestive of myocarditis, myocardial biopsies were obtained and histologically confirmed anti-PD-1 antibody-associated myocarditis. After the initiation of prednisone at 1 mg/kg body weight, the patient gradually recovered and was discharged three weeks later with markedly improved cardiac function. Conclusion: This case resembles the first description of a very late onset irMyocarditis, occurring over 2.5 years after the start of treatment. It demonstrates the importance of contemplating that severe immune-related toxicities with a sudden onset clinical presentation may occur even after long uneventful periods of anti-PD-1 immune checkpoint inhibitor treatment. Furthermore, it underlines the critical importance of myocardial biopsies in this setting, especially when cardiac MRI remains inconclusive. Moreover, it demonstrates the necessity and benefits of early immunosuppressive treatment if immune-related myocarditis is considered a differential diagnosis.

5.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873443

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

6.
Ann Palliat Med ; 12(6): 1175-1186, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872126

RESUMO

BACKGROUND: Worldwide, progressive chronic, non-malignant diseases are highly prevalent. Especially with increasing age, they are characterised by high hospitalisation rates and high healthcare costs. Improved interprofessional collaboration between general practitioners (GPs) and specialist palliative home care (SPHC) teams might reduce hospitalisation while improving symptoms and quality of life, or preventing them from deterioration. The aim of this study was to examine the cost-effectiveness of a newly developed intervention in patients with advanced chronic, non-malignant diseases consisting of a structured palliative care nurse-patient consultation followed by an interprofessional telephone case conference. METHODS: The analysis was based on data from 172 participants of the KOPAL multi-centre, cluster randomised controlled trial. Patients with advanced congestive heart failure (CHF), chronic obstructive pulmonary disease (COPD), or dementia were randomised into intervention group (IG) and control group (CG, usual care). Cost-effectiveness was examined over 48 weeks from a societal and healthcare payer's perspective. Effects were quantified as quality-adjusted life years (QALYs, EQ-5D-5L). Incremental cost-effectiveness ratios were calculated and cost-effectiveness acceptability curves were constructed. RESULTS: Baseline imbalances in costs and effects could be observed between IG and CG. After adjusting for these imbalances and compared to the CG, mean costs in the IG were non-significantly higher from a societal and lower from a payer's perspective. On the effect side, the IG had marginally lower mean QALYs. The results were characterized by high statistical uncertainty, indicated by large confidence intervals for the cost and effect differences between groups and probabilities of cost-effectiveness between 18% and 65%, depending on the perspective and willingness-to-pay. CONCLUSIONS: Based on the results of this study, the cost-effectiveness of the KOPAL intervention was uncertain. The results highlighted (methodological) challenges of economic evaluations in patients with chronic, non-malignant diseases related to sample size, heterogeneity of participants, and the way the intervention effectiveness is typically captured in economic evaluations.


Assuntos
Cuidados Paliativos , Qualidade de Vida , Humanos , Análise Custo-Benefício , Doença Crônica , Encaminhamento e Consulta , Anos de Vida Ajustados por Qualidade de Vida
7.
Antiviral Res ; 218: 105714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689311

RESUMO

The RNA 2'-O methyltransferase (MTase) VP39 of the monkeypox virus (MpxV) participates in RNA capping within poxviruses. Sub-micromolar inhibitors targeting this enzyme were already reported. However, these 7-deaza analogs of S-adenosyl methionine (SAH) had not been tested in cellular assays until now. In this study, we employed plaque assays and cytopathic effect-based assays to evaluate the effectiveness of these compounds. All tested compounds demonstrated antiviral activity against MpxV, with EC50 values ranging from 0.06 to 2.7 µM. Nevertheless, some of these compounds also exhibited cytotoxicity in HeLa cells, while others showed no toxicity. Notably, the non-toxic compounds featured a large aromatic substituent at the 7-deaza position, whereas the toxic compounds had a small substituent at the same position. These findings suggest that VP39 represents a bona fide target for the development of antiviral drugs against MpxV.

8.
ACS Omega ; 8(30): 27410-27418, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546609

RESUMO

The search for new drugs against COVID-19 and its causative agent, SARS-CoV-2, is one of the major trends in the current medicinal chemistry. Targeting capping machinery could be one of the therapeutic concepts based on a unique mechanism of action. Viral RNA cap synthesis involves two methylation steps, the first of which is mediated by the nsp14 protein. Here, we rationally designed and synthesized a series of compounds capable of binding to both the S-adenosyl-l-methionine and the RNA-binding site of SARS-CoV-2 nsp14 N7-methyltransferase. These hybrid molecules showed excellent potency, high selectivity toward various human methyltransferases, nontoxicity, and high cell permeability. Despite the outstanding activity against the enzyme, our compounds showed poor antiviral performance in vitro. This suggests that the activity of this viral methyltransferase has no significant effect on virus transcription and replication at the cellular level. Therefore, our compounds represent unique tools to further explore the role of the SARS-CoV-2 nsp14 methyltransferase in the viral life cycle and the pathogenesis of COVID-19.

9.
Commun Biol ; 6(1): 801, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532778

RESUMO

Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Molibdênio/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pteridinas , Homeostase
10.
Sci Rep ; 13(1): 9161, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280236

RESUMO

Proteases encoded by SARS-CoV-2 constitute a promising target for new therapies against COVID-19. SARS-CoV-2 main protease (Mpro, 3CLpro) and papain-like protease (PLpro) are responsible for viral polyprotein cleavage-a process crucial for viral survival and replication. Recently it was shown that 2-phenylbenzisoselenazol-3(2H)-one (ebselen), an organoselenium anti-inflammatory small-molecule drug, is a potent, covalent inhibitor of both the proteases and its potency was evaluated in enzymatic and antiviral assays. In this study, we screened a collection of 34 ebselen and ebselen diselenide derivatives for SARS-CoV-2 PLpro and Mpro inhibitors. Our studies revealed that ebselen derivatives are potent inhibitors of both the proteases. We identified three PLpro and four Mpro inhibitors superior to ebselen. Independently, ebselen was shown to inhibit the N7-methyltransferase activity of SARS-CoV-2 nsp14 protein involved in viral RNA cap modification. Hence, selected compounds were also evaluated as nsp14 inhibitors. In the second part of our work, we employed 11 ebselen analogues-bis(2-carbamoylaryl)phenyl diselenides-in biological assays to evaluate their anti-SARS-CoV-2 activity in Vero E6 cells. We present their antiviral and cytoprotective activity and also low cytotoxicity. Our work shows that ebselen, its derivatives, and diselenide analogues constitute a promising platform for development of new antivirals targeting the SARS-CoV-2 virus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Metiltransferases , Peptídeo Hidrolases , Antivirais/farmacologia , Antivirais/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/farmacologia , Simulação de Acoplamento Molecular
12.
Eur J Cancer ; 179: 124-135, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36521334

RESUMO

OBJECTIVES: Resistance to MET inhibition occurs inevitably in MET-dependent non-small cell lung cancer and the underlying mechanisms are insufficiently understood. We describe resistance mechanisms in patients with MET exon 14 skipping mutation (METΔex14), MET amplification, and MET fusion and report treatment outcomes after switching therapy from type I to type II MET inhibitors. MATERIALS AND METHODS: Pre- and post-treatment biopsies were analysed by NGS (next generation sequencing), digital droplet PCR (polymerase chain reaction), and FISH (fluorescense in situ hybridization). A patient-derived xenograft model was generated in one case. RESULTS: Of 26 patients with MET tyrosine kinase inhibitor treatment, eight had paired pre- and post-treatment biopsies (Three with MET amplification, three with METΔex14, two with MET fusions (KIF5B-MET and PRKAR2B-MET).) In six patients, mechanisms of resistance were detected, whereas in two cases, the cause of resistance remained unclear. We found off-target resistance mechanisms in four cases with KRAS mutations and HER2 amplifications appearing. Two patients exhibited second-site MET mutations (p.D1246N and p. Y1248H). Three patients received type I and type II MET tyrosine kinase inhibitors sequentially. In two cases, further progressive disease was seen hereafter. The patient with KIF5B-MET fusion received three different MET inhibitors and showed long-lasting stable disease and a repeated response after switching therapy, respectively. CONCLUSION: Resistance to MET inhibition is heterogeneous with on- and off-target mechanisms occurring regardless of the initial MET aberration. Switching therapy between different types of kinase inhibitors can lead to repeated responses in cases with second-site mutations. Controlled clinical trials in this setting with larger patient numbers are needed, as evidence to date is limited to preclinical data and case series.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação
13.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293420

RESUMO

d-Arabinofuranosyl-pyrimidine and -purine nucleoside analogues containing alkylthio-, acetylthio- or 1-thiosugar substituents at the C2' position were prepared from the corresponding 3',5'-O-silylene acetal-protected nucleoside 2'-exomethylenes by photoinitiated, radical-mediated hydrothiolation reactions. Although the stereochemical outcome of the hydrothiolation depended on the structure of both the thiol and the furanoside aglycone, in general, high d-arabino selectivity was obtained. The cytotoxic effect of the arabinonucleosides was studied on tumorous SCC (mouse squamous cell) and immortalized control HaCaT (human keratinocyte) cell lines by MTT assay. Three pyrimidine nucleosides containing C2'-butylsulfanylmethyl or -acetylthiomethyl groups showed promising cytotoxicity at low micromolar concentrations with good selectivity towards tumor cells. SAR analysis using a methyl ß-d-arabinofuranoside reference compound showed that the silyl-protecting group, the nucleobase and the corresponding C2' substituent are crucial for the cell growth inhibitory activity. The effects of the three most active nucleoside analogues on parameters indicative of cytotoxicity, such as cell size, division time and cell generation time, were investigated by near-infrared live cell imaging, which showed that the 2'-acetylthiomethyluridine derivative induced the most significant functional and morphological changes. Some nucleoside analogues also exerted anti-SARS-CoV-2 and/or anti-HCoV-229E activity with low micromolar EC50 values; however, the antiviral activity was always accompanied by significant cytotoxicity.


Assuntos
COVID-19 , Nucleosídeos de Pirimidina , Tioaçúcares , Humanos , Camundongos , Animais , Arabinonucleosídeos/química , Arabinonucleosídeos/farmacologia , Nucleosídeos/farmacologia , Nucleosídeos/química , Antivirais/farmacologia , Acetais , Compostos de Sulfidrila/química , Purinas , Relação Estrutura-Atividade
14.
Antiviral Res ; 208: 105449, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265804

RESUMO

Influenza virus causes severe respiratory infection in humans. Current antivirotics target three key proteins in the viral life cycle: neuraminidase, the M2 channel and the endonuclease domain of RNA-dependent-RNA polymerase. Due to the development of novel pandemic strains, additional antiviral drugs targetting different viral proteins are still needed. The protein-protein interaction between polymerase subunits PA and PB1 is one such possible target. We recently identified a modified decapeptide derived from the N-terminus of the PB1 subunit with high affinity for the C-terminal part of the PA subunit. Here, we optimized its amino acid hotspots to maintain the inhibitory potency and greatly increase peptide solubility. This allowed thermodynamic characterization of peptide binding to PA. Solving the X-ray structure of the peptide-PA complex provided structural insights into the interaction. Additionally, we optimized intracellular delivery of the peptide using a bicyclic strategy that led to improved inhibition in cell-based assays.


Assuntos
Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Ligação Proteica , RNA Polimerase Dependente de RNA , Peptídeos/farmacologia , Peptídeos/metabolismo , Termodinâmica
15.
Mol Plant ; 15(10): 1615-1631, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36131543

RESUMO

Plant receptors constitute a large protein family that regulates various aspects of development and responses to external cues. Functional characterization of this protein family and the identification of their ligands remain major challenges in plant biology. Previously, we identified plasma membrane-intrinsic sucrose-induced receptor kinase 1 (SIRK1) and Qian Shou kinase 1 (QSK1) as receptor/co-receptor pair involved in the regulation of aquaporins in response to osmotic conditions induced by sucrose. In this study, we identified a member of the elicitor peptide (PEP) family, namely PEP7, as the specific ligand of th receptor kinase SIRK1. PEP7 binds to the extracellular domain of SIRK1 with a binding constant of 1.44 ± 0.79 µM and is secreted to the apoplasm specifically in response to sucrose treatment. Stabilization of a signaling complex involving SIRK1, QSK1, and aquaporins as substrates is mediated by alterations in the external sucrose concentration or by PEP7 application. Moreover, the presence of PEP7 induces the phosphorylation of aquaporins in vivo and enhances water influx into protoplasts. Disturbed water influx, in turn, led to delayed lateral root development in the pep7 mutant. The loss-of-function mutant of SIRK1 is not responsive to external PEP7 treatment regarding kinase activity, aquaporin phosphorylation, water influx activity, and lateral root development. Taken together, our data indicate that the PEP7/SIRK1/QSK1 complex represents a crucial perception and response module that mediates sucrose-controlled water flux in plants and lateral root development.


Assuntos
Aquaporinas , Sacarose , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Ligantes , Peptídeos/metabolismo , Raízes de Plantas/metabolismo , Sacarose/metabolismo , Sacarose/farmacologia , Água/metabolismo
16.
Inn Med (Heidelb) ; 63(7): 724-730, 2022 Jul.
Artigo em Alemão | MEDLINE | ID: mdl-35925272

RESUMO

BACKGROUND: Although the treatment and prognosis of many solid tumor types in the metastatic situation could be considerably improved during the last decade, for a long time no significant progress in the treatment of small cell lung cancer (SCLC) could be achieved. OBJECTIVE: The aim of this article is to describe the current treatment standard for SCLC and to discuss potential approaches for further improvement. METHODS: A selective literature search was carried out in PubMed and abstract lists of relevant conferences. RESULTS: Given the recent approval of two immunochemotherapy regimens based on the combination of anti-PD-L1 antibodies with platinum-etoposide, the therapeutic standard in the first line treatment of metastasized SCLC has finally been improved for the first time in three decades; however, the overall survival benefit has been modest with an improvement of just 2-3 months. In advanced lines of treatment no new approaches could so far show improved outcome compared with established chemotherapy protocols, such as topotecan and combinations of anthracycline, cyclophosphamide and vincristine. The slow progress in SCLC compared to non-SCLC, has been attributed to the complex biology, the exceptionally high proliferation rate and rapid development of resistance to chemotherapy. Increasing knowledge on the molecular and immunological principles of SCLC is increasingly opening up novel treatment approaches. CONCLUSION: There has finally been a slow but clinically meaningful progress in the treatment of SCLC. Patients should be included in clinical trials at the latest after second line treatment, in order to accelerate the speed of the expansion of treatment options.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/induzido quimicamente , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Topotecan
17.
Front Bioeng Biotechnol ; 10: 815393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237577

RESUMO

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production. Non-thermal plasma (NTP) is a decontamination technique with documented efficiency against select bacterial and fungal pathogens combined with low damage to exposed materials. We have investigated NTP for decontamination of high-efficiency P3 R filters from viral respiratory pathogens in comparison to other commonly used techniques. We show that NTP treatment completely inactivates SARS-CoV-2 and three other common human respiratory viruses including Influenza A, Rhinovirus and Adenovirus, revealing an efficiency comparable to 90°C dry heat or UVC light. Unlike some of the tested techniques (e.g., autoclaving), NTP neither influenced the filtering efficiency nor the microstructure of the filter. We demonstrate that NTP is a powerful and economic technology for efficient decontamination of protective filters and other sensitive materials from different respiratory pathogens.

18.
ChemMedChem ; 17(9): e202200005, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35187791

RESUMO

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 µm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 µM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.


Assuntos
Artemisininas , Tratamento Farmacológico da COVID-19 , Leucemia , Neoplasias , Quinolinas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Artemisininas/farmacologia , Chlorocebus aethiops , Humanos , Leucemia/tratamento farmacológico , Neoplasias/tratamento farmacológico , Peróxidos , Quinolinas/uso terapêutico , SARS-CoV-2 , Células Vero
19.
FEBS J ; 289(10): 2895-2914, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34839586

RESUMO

Hepatitis B virus uses e antigen (HBe), which is dispensable for virus infectivity, to modulate host immune responses and achieve viral persistence in human hepatocytes. The HBe precursor (p25) is directed to the endoplasmic reticulum (ER), where cleavage of the signal peptide (sp) gives rise to the first processing product, p22. P22 can be retro-translocated back to the cytosol or enter the secretory pathway and undergo a second cleavage event, resulting in secreted p17 (HBe). Here, we report that translocation of p25 to the ER is promoted by translocon-associated protein complex. We have found that p25 is not completely translocated into the ER; a fraction of p25 is phosphorylated and remains in the cytoplasm and nucleus. Within the p25 sp sequence, we have identified three cysteine residues that control the efficiency of sp cleavage and contribute to proper subcellular distribution of the precore pool.


Assuntos
Antígenos E da Hepatite B , Hepatite B , Proteínas de Ligação ao Cálcio , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/metabolismo , Humanos , Glicoproteínas de Membrana , Sinais Direcionadores de Proteínas/genética , Receptores Citoplasmáticos e Nucleares , Receptores de Peptídeos
20.
Viruses ; 13(12)2021 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-34960710

RESUMO

Chronic hepatitis caused by infection with the Hepatitis B virus is a life-threatening condition. In fact, 1 million people die annually due to liver cirrhosis or hepatocellular carcinoma. Recently, several studies demonstrated a molecular connection between the host DNA damage response (DDR) pathway and HBV replication and reactivation. Here, we investigated the role of Ataxia-telangiectasia-mutated (ATM) and Ataxia telangiectasia and Rad3-related (ATR) PI3-kinases in phosphorylation of the HBV core protein (HBc). We determined that treatment of HBc-expressing hepatocytes with genotoxic agents, e.g., etoposide or hydrogen peroxide, activated the host ATM-Chk2 pathway, as determined by increased phosphorylation of ATM at Ser1981 and Chk2 at Thr68. The activation of ATM led, in turn, to increased phosphorylation of cytoplasmic HBc at serine-glutamine (SQ) motifs located in its C-terminal domain. Conversely, down-regulation of ATM using ATM-specific siRNAs or inhibitor effectively reduced etoposide-induced HBc phosphorylation. Detailed mutation analysis of S-to-A HBc mutants revealed that S170 (S168 in a 183-aa HBc variant) is the primary site targeted by ATM-regulated phosphorylation. Interestingly, mutation of two major phosphorylation sites involving serines at positions 157 and 164 (S155 and S162 in a 183-aa HBc variant) resulted in decreased etoposide-induced phosphorylation, suggesting that the priming phosphorylation at these serine-proline (SP) sites is vital for efficient phosphorylation of SQ motifs. Notably, the mutation of S172 (S170 in a 183-aa HBc variant) had the opposite effect and resulted in massively up-regulated phosphorylation of HBc, particularly at S170. Etoposide treatment of HBV infected HepG2-NTCP cells led to increased levels of secreted HBe antigen and intracellular HBc protein. Together, our studies identified HBc as a substrate for ATM-mediated phosphorylation and mapped the phosphorylation sites. The increased expression of HBc and HBe antigens in response to genotoxic stress supports the idea that the ATM pathway may provide growth advantage to the replicating virus.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Proteínas do Core Viral/metabolismo , Motivos de Aminoácidos , Quinase do Ponto de Checagem 2/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Etoposídeo/farmacologia , Células Hep G2 , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Fosforilação , Serina/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas do Core Viral/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA