Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Neurol Res Pract ; 5(1): 20, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198666

RESUMO

BACKGROUND: Discontinuing anti-seizure medication (ASM) should be considered in persons with epilepsy with long-term seizure freedom. Clinicians should also pursue ASM withdrawal in persons with one-time seizures without increased recurrence risk and those with suspected non-epileptic events. However, ASM withdrawal is associated with the risk of recurring seizures. Monitored ASM withdrawal in an epilepsy monitoring unit (EMU) could help better evaluate the risk of seizure recurrence. Here, we investigate the practice of EMU-guided ASM withdrawal, assess its indications, and aim to determine positive and negative predictors for successful withdrawal. METHODS: We screened the medical records of all patients admitted to our EMU between November 1, 2019, and October 31, 2021, and included patients of at least 18 years admitted with the aim of permanent ASM withdrawal. We defined four groups of withdrawal indications: (1) long-term seizure freedom; (2) suspected non-epileptic events; (3) history of epileptic seizures but not fulfilling diagnostic criteria of epilepsy; and (4) seizure-freedom after epilepsy surgery. Successful withdrawal was defined according to the following criteria: no recoding of (sub)clinical seizure activity during VEM (groups 1, 2, and 3), patients did not meet the International League Against Epilepsy (ILAE) definition of epilepsy (groups 2 and 3) [14], and patients were discharged without ongoing ASM treatment (all groups). We also evaluated the prediction model by Lamberink et al. (LPM) for the risk of seizure recurrence in groups 1 and 3. RESULTS: 55/651 (8.6%) patients fulfilled the inclusion criteria. Withdrawal indications were distributed as follows; group 1: 2/55 (3.6%); group 2: 44/55 (80%); group 3: 9/55 (16,4%); group 4: 0/55. Overall, ASM withdrawal was successful in 90.9%. The sensitivity of the LPM for a 2-year 50% relapse risk threshold was 75%, the specificity 33.3%; for a 5-year relapse risk respectively 12.5% and 33.3%, suggesting that the model is not suitable for risk assessment in patients with one-time seizures or acute-symptomatic seizures, who constituted most of the evaluated patients. CONCLUSIONS: Our study suggests that EMU-guided ASM withdrawal could be a helpful tool to support clinical decision-making and improve patient safety. Prospective, randomized trials should further evaluate this method in the future.

2.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Seizure ; 95: 4-10, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34953286

RESUMO

INTRODUCTION: Genetic testing in people with epilepsy may support presurgical decision-making. It is currently unclear to what extent epilepsy centres use genetic testing in presurgical evaluation. METHODS: We performed an exploratory survey among members of the German Society for Epileptology to study the current practice of genetic testing in presurgical evaluation at the respective sites. Survey participants contributed educational case reports. RESULTS: The majority of participants consider genetic testing to be useful in individuals with familial syndromes or phenotypic features suggesting a genetic etiology. We report 25 cases of individuals with a confirmed genetic diagnosis that have previously undergone epilepsy surgery. Our cases demonstrate that a genetic diagnosis has an impact on both the decision-making process during presurgical evaluation, as well as the postoperative outcome. CONCLUSION: Genetic testing as part of the presurgical work-up is becoming increasingly established in epilepsy centres across Germany. mTORopathies and genetic hypothalamic hamartomas seem to be associated with a generally favourable surgical outcome. Synaptopathies and channelopathies may be associated with a worse outcome and should be considered on a case-by-case level. Prospective studies are needed to examine the impact of an established genetic diagnosis on postsurgical outcome.


Assuntos
Epilepsia , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/cirurgia , Testes Genéticos , Alemanha , Humanos , Estudos Prospectivos
4.
Biomedicines ; 8(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126500

RESUMO

Pathogenic variants in PRRT2, encoding the proline-rich transmembrane protein 2, have been associated with an evolving spectrum of paroxysmal neurologic disorders. Based on a cohort of children with PRRT2-related infantile epilepsy, this study aimed at delineating the broad clinical spectrum of PRRT2-associated phenotypes in these children and their relatives. Only a few recent larger cohort studies are on record and findings from single reports were not confirmed so far. We collected detailed genetic and phenotypic data of 40 previously unreported patients from 36 families. All patients had benign infantile epilepsy and harbored pathogenic variants in PRRT2 (core cohort). Clinical data of 62 family members were included, comprising a cohort of 102 individuals (extended cohort) with PRRT2-associated neurological disease. Additional phenotypes in the cohort of patients with benign sporadic and familial infantile epilepsy consist of movement disorders with paroxysmal kinesigenic dyskinesia in six patients, infantile-onset movement disorders in 2 of 40 individuals, and episodic ataxia after mild head trauma in one girl with bi-allelic variants in PRRT2. The same girl displayed a focal cortical dysplasia upon brain imaging. Familial hemiplegic migraine and migraine with aura were reported in nine families. A single individual developed epilepsy with continuous spikes and waves during sleep. In addition to known variants, we report the novel variant c.843G>T, p.(Trp281Cys) that co-segregated with benign infantile epilepsy and migraine in one family. Our study highlights the variability of clinical presentations of patients harboring pathogenic PRRT2 variants and expands the associated phenotypic spectrum.

5.
Neuropediatrics ; 51(5): 368-372, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32392612

RESUMO

Patients with neurofibromatosis type 1 (NF1) have an increased risk for West syndrome (WS), but the underlying mechanisms linking NF1 and WS are unknown. In contrast to other neurocutaneous syndromes, intracerebral abnormalities explaining the course of infantile spasms (IS) are often absent and the seizure outcome is usually favorable. Several studies have investigated a potential genotype-phenotype correlation between NF1 and seizure susceptibility, but an association was not identified. Therefore, we identified three patients with NF1-related WS (NF1-WS) in a cohort of 51 NF1 patients and performed whole-exome sequencing (WES) to identify genetic modifiers. In two NF1 patients with WS and good seizure outcome, we did not identify variants in epilepsy-related genes. However, in a single patient with NF1-WS and transition to drug-resistant epilepsy, we identified a de novo variant in KCNC2 (c.G499T, p.D167Y) coding for Kv3.2 as a previously undescribed potassium channel to be correlated to epilepsy. Electrophysiological studies of the identified KCNC2 variant demonstrated both a strong loss-of-function effect for the current amplitude and a gain-of-function effect for the channel activation recommending a complex network effect. These results suggest that systematic genetic analysis for potentially secondary genetic etiologies in NF1 patients and severe epilepsy presentations should be done.


Assuntos
Neurofibromatose 1/genética , Canais de Potássio Shaw/genética , Espasmos Infantis/genética , Comorbidade , Humanos , Lactente , Sequenciamento do Exoma
6.
Eur J Hum Genet ; 27(11): 1738-1744, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358956

RESUMO

It is challenging to estimate genetic variant burden across different subtypes of epilepsy. Herein, we used a comparative approach to assess the genetic variant burden and genotype-phenotype correlations in four most common brain lesions in patients with drug-resistant focal epilepsy. Targeted sequencing analysis was performed for a panel of 161 genes with a mean coverage of >400×. Lesional tissue was histopathologically reviewed and dissected from hippocampal sclerosis (n = 15), ganglioglioma (n = 16), dysembryoplastic neuroepithelial tumors (n = 8), and focal cortical dysplasia type II (n = 15). Peripheral blood (n = 12) or surgical tissue samples histopathologically classified as lesion-free (n = 42) were available for comparison. Variants were classified as pathogenic or likely pathogenic according to American College of Medical Genetics and Genomics guidelines. Overall, we identified pathogenic and likely pathogenic variants in 25.9% of patients with a mean coverage of 383×. The highest number of pathogenic/likely pathogenic variants was observed in patients with ganglioglioma (43.75%; all somatic) and dysembryoplastic neuroepithelial tumors (37.5%; all somatic), and in 20% of cases with focal cortical dysplasia type II (13.33% somatic, 6.67% germline). Pathogenic/likely pathogenic positive genes were disorder specific and BRAF V600E the only recurrent pathogenic variant. This study represents a reference for the genetic variant burden across the four most common lesion entities in patients with drug-resistant focal epilepsy. The observed large variability in variant burden by epileptic lesion type calls for whole exome sequencing of histopathologically well-characterized tissue in a diagnostic setting and in research to discover novel disease-associated genes.


Assuntos
Neoplasias Encefálicas/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia/genética , Predisposição Genética para Doença/genética , Variação Genética , Encéfalo , Ganglioglioma/genética , Estudos de Associação Genética , Alemanha , Glioma/genética , Humanos , Malformações do Desenvolvimento Cortical do Grupo I/genética , Esclerose/genética , Sequenciamento do Exoma
7.
Brain ; 142(2): 376-390, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30615093

RESUMO

Ion channel mutations can cause distinct neuropsychiatric diseases. We first studied the biophysical and neurophysiological consequences of four mutations in the human Na+ channel gene SCN8A causing either mild (E1483K) or severe epilepsy (R1872W), or intellectual disability and autism without epilepsy (R1620L, A1622D). Only combined electrophysiological recordings of transfected wild-type or mutant channels in both neuroblastoma cells and primary cultured neurons revealed clear genotype-phenotype correlations. The E1483K mutation causing mild epilepsy showed no significant biophysical changes, whereas the R1872W mutation causing severe epilepsy induced clear gain-of-function biophysical changes in neuroblastoma cells. However, both mutations increased neuronal firing in primary neuronal cultures. In contrast, the R1620L mutation associated with intellectual disability and autism-but not epilepsy-reduced Na+ current density in neuroblastoma cells and expectedly decreased neuronal firing. Interestingly, for the fourth mutation, A1622D, causing severe intellectual disability and autism without epilepsy, we observed a dramatic slowing of fast inactivation in neuroblastoma cells, which induced a depolarization block in neurons with a reduction of neuronal firing. This latter finding was corroborated by computational modelling. In a second series of experiments, we recorded three more mutations (G1475R, M1760I, G964R, causing intermediate or severe epilepsy, or intellectual disability without epilepsy, respectively) that revealed similar results confirming clear genotype-phenotype relationships. We found intermediate or severe gain-of-function biophysical changes and increases in neuronal firing for the two epilepsy-causing mutations and decreased firing for the loss-of-function mutation causing intellectual disability. We conclude that studies in neurons are crucial to understand disease mechanisms, which here indicate that increased or decreased neuronal firing is responsible for distinct clinical phenotypes.


Assuntos
Epilepsia/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Neurônios/fisiologia , Animais , Células Cultivadas , Humanos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos
8.
Epilepsy Behav ; 91: 90-93, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30076047

RESUMO

The glucose transporter type 1 (Glut1) is the most important energy carrier of the brain across the blood-brain barrier. In the early nineties, the first genetic defect of Glut1 was described and known as the Glut1 deficiency syndrome (Glut1-DS). It is characterized by early infantile seizures, developmental delay, microcephaly, and ataxia. Recently, milder variants have also been described. The clinical picture of Glut1 defects and the understanding of the pathophysiology of this disease have significantly grown. A special form of transient movement disorders, the paroxysmal exertion-induced dyskinesia (PED), absence epilepsies particularly with an early onset absence epilepsy (EOAE) and childhood absence epilepsy (CAE), myoclonic astatic epilepsy (MAE), episodic choreoathetosis and spasticity (CSE), and focal epilepsy can be based on a Glut1 defect. Despite the rarity of these diseases, the Glut1 syndromes are of high clinical interest since a very effective therapy, the ketogenic diet, can improve or reverse symptoms especially if it is started as early as possible. The present article summarizes the clinical features of Glut1 syndromes and discusses the underlying genetic mutations, including the available data on functional tests as well as the genotype-phenotype correlations. This article is part of the Special Issue "Individualized Epilepsy Management: Medicines, Surgery and Beyond".


Assuntos
Epilepsia/genética , Transportador de Glucose Tipo 1/genética , Transtornos dos Movimentos/genética , Mutação/genética , Erros Inatos do Metabolismo dos Carboidratos/diagnóstico , Erros Inatos do Metabolismo dos Carboidratos/dietoterapia , Erros Inatos do Metabolismo dos Carboidratos/genética , Dieta Cetogênica/métodos , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/dietoterapia , Distúrbios Distônicos/genética , Epilepsias Mioclônicas/diagnóstico , Epilepsias Mioclônicas/dietoterapia , Epilepsias Mioclônicas/genética , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/dietoterapia , Epilepsias Parciais/genética , Epilepsia/diagnóstico , Epilepsia/dietoterapia , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Tipo Ausência/dietoterapia , Epilepsia Tipo Ausência/genética , Humanos , Proteínas de Transporte de Monossacarídeos/deficiência , Proteínas de Transporte de Monossacarídeos/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/dietoterapia
9.
Epilepsy Behav ; 82: 64-67, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29587187

RESUMO

OBJECTIVE: The objective of the present study was to collect systematic data on the care of adult patients with tuberous sclerosis complex (TSC) in German epilepsy centers, to describe the characteristics of patients in this age group, and to clarify whether and how the recommended interdisciplinary care is implemented. METHODS: This retrospective survey involved 12 major epilepsy centers in Germany. Aggregated data were collected based on an electronic questionnaire that addressed the sociodemographic data, characteristics of the epilepsy syndromes, and general healthcare setting of adult patients with TSC. RESULTS: The survey included 262 patients (mean age: 36.2±9.0years) with TSC, most of whom were reported to live in either a home for persons with a disability (37.0%), a residential care home (6.9%), or with their parents (31.1%). A further 13.0% were self-sustaining, and 8.8% were living with a partner. Most patients presented with focal (49.6%) or multifocal (33.2%) epilepsy, with complex partial, dialeptic, and automotor seizures in 66% of patients and generalized tonic-clonic seizures in 63%. Drug-refractory epilepsy was seen in 78.2% of patients, and 17.6% were seizure-free at the time of the survey. Of the 262 patients, presurgical diagnostics were performed in 27% and epilepsy surgery in 9%, which rendered 50% of these patients seizure-free. Renal screening had been performed in 56.1% within the last three years and was scheduled to be performed in 58.0%. Cases of renal angiomyolipoma were present in 46.9% of the patients. Dermatologic and pulmonary screenings were known to be planned for only few patients. CONCLUSION: Despite TSC being a multisystem disorder causing considerable impairment, every fifth adult patient is self-sustaining or living with a partner. In clinical practice, uncontrolled epilepsy and renal angiomyolipoma are of major importance in adult patients with TSC. Most patients suffer from focal or multifocal epilepsy, but epilepsy surgery is performed in less than 10% of these patients. Interdisciplinary TSC centers may help to optimize the management of patients with TSC regardless of age and ensure early and adequate treatment that also considers the advances in new therapeutic options.


Assuntos
Atenção à Saúde/métodos , Epilepsia/epidemiologia , Epilepsia/terapia , Esclerose Tuberosa/epidemiologia , Esclerose Tuberosa/terapia , Adolescente , Adulto , Criança , Pré-Escolar , Atenção à Saúde/tendências , Epilepsia/diagnóstico , Feminino , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Inquéritos e Questionários , Esclerose Tuberosa/diagnóstico , Adulto Jovem
10.
N Engl J Med ; 377(17): 1648-1656, 2017 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-29069555

RESUMO

BACKGROUND: Detailed neuropathological information on the structural brain lesions underlying seizures is valuable for understanding drug-resistant focal epilepsy. METHODS: We report the diagnoses made on the basis of resected brain specimens from 9523 patients who underwent epilepsy surgery for drug-resistant seizures in 36 centers from 12 European countries over 25 years. Histopathological diagnoses were determined through examination of the specimens in local hospitals (41%) or at the German Neuropathology Reference Center for Epilepsy Surgery (59%). RESULTS: The onset of seizures occurred before 18 years of age in 75.9% of patients overall, and 72.5% of the patients underwent surgery as adults. The mean duration of epilepsy before surgical resection was 20.1 years among adults and 5.3 years among children. The temporal lobe was involved in 71.9% of operations. There were 36 histopathological diagnoses in seven major disease categories. The most common categories were hippocampal sclerosis, found in 36.4% of the patients (88.7% of cases were in adults), tumors (mainly ganglioglioma) in 23.6%, and malformations of cortical development in 19.8% (focal cortical dysplasia was the most common type, 52.7% of cases of which were in children). No histopathological diagnosis could be established for 7.7% of the patients. CONCLUSIONS: In patients with drug-resistant focal epilepsy requiring surgery, hippocampal sclerosis was the most common histopathological diagnosis among adults, and focal cortical dysplasia was the most common diagnosis among children. Tumors were the second most common lesion in both groups. (Funded by the European Union and others.).


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Epilepsia/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Adulto , Fatores Etários , Idade de Início , Neoplasias Encefálicas/complicações , Criança , Bases de Dados como Assunto , Epilepsia/etiologia , Epilepsia/cirurgia , Europa (Continente) , Feminino , Humanos , Masculino , Malformações do Desenvolvimento Cortical/complicações , Lobo Temporal/patologia
11.
Free Radic Biol Med ; 106: 270-277, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28232204

RESUMO

Increased oxidative stress has been widely implicated in the pathogenesis in various forms of human epilepsy. Here, we report a homozygous mutation in TXNRD1 (thioredoxin reductase 1) in a family with genetic generalized epilepsy. TXNRD1 is an essential selenium-containing enzyme involved in detoxification of reactive oxygen species (ROS) and redox signaling. The TXNRD1 mutation p.Pro190Leu affecting a highly conserved amino acid residue was identified by whole-exome sequencing of blood DNA from the index patient. The detected mutation and its segregation within the family - all siblings of the index patient were homozygous and the parents heterozygous - were confirmed by Sanger sequencing. TXNRD1 activity was determined in subcellular fractions from a skeletal muscle biopsy and skin fibroblasts of the index patient and the expression levels of the mutated protein were assessed by 75Se labeling and Western blot analysis. As result of the mutation, the activity of TXNRD1 was reduced in the patient's fibroblasts and skeletal muscle (to 34±3% and 16±8% of controls, respectively). In fibroblasts, we detected reduced 75Se-labeling of the enzyme (41±3% of controls). An in-depth in vitro kinetic analysis of the recombinant mutated TXNRD1 indicated 30-40% lowered kcat/Se values. Therefore, a reduced activity of the enzyme in the patient's tissue samples is explained by (i) lower enzyme turnover and (ii) reduced abundance of the mutated enzyme as confirmed by Western blotting and 75Se labeling. The mutant fibroblasts were also found to be less resistant to a hydrogen peroxide challenge. Our data agree with a potential role of insufficient ROS detoxification for disease manifestation in genetic generalized epilepsy.


Assuntos
Epilepsia Generalizada/genética , Predisposição Genética para Doença , Estresse Oxidativo/genética , Tiorredoxina Redutase 1/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia Generalizada/fisiopatologia , Feminino , Glutationa/metabolismo , Homozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento do Exoma
12.
Seizure ; 39: 5-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27161669

RESUMO

PURPOSE: This non-interventional study was conducted to evaluate the efficacy and tolerability of intravenous lacosamide (LCM-iv) under routine conditions in daily clinical practice as a prospective registry. METHODS: Patients with any type of seizure or epilepsy syndrome were recruited in 16 neurological and neuropediatric centers in Germany if the treating physician decided to administer LCM-iv for any reason. Observation time per patient was 10 days with daily documentation of LCM-iv administration, type and frequency of seizures, currently used drugs and doses, and adverse events. Treatment efficacy, tolerability, and handling of LCM-iv were assessed using a five-step scale. RESULTS: In 119 patients treating physicians classified epilepsies as focal in 66.1% and generalized in 17.4% (16.5% unclassifiable). Most common etiologies of seizures were tumors (36.1%) and cerebrovascular diseases (21.8%). Reasons for LCM-iv treatment included preparation for surgery (25.2%), convulsive (24.4%) and non-convulsive (18.5%) status epilepticus (SE), series of seizures (16.0%), gastrointestinal causes (5.9%), and acute seizures (4.2%). The median dose of LCM-iv was 300mg per day. In 45 of 64 patients (70.3%) with SE or series of seizures, epileptic activity ceased during observation time. Five patients showed abnormalities in ECG prior to the infusion and one patient afterwards, but during infusion no abnormalities were reported. Treating physicians rated efficacy and tolerability as very good or good in 77.6% and 93.1% of patients, respectively. CONCLUSIONS: This large and independent multicenter registry on the use of LCM-iv in clinical practice demonstrates that LCM-iv is well-tolerated and highly efficacious when given in emergency situations, including patients experiencing SE. It is advisable to perform an electrocardiogram prior to LCM-iv administration.


Assuntos
Acetamidas/farmacologia , Anticonvulsivantes/farmacologia , Epilepsia/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Sistema de Registros , Acetamidas/administração & dosagem , Acetamidas/efeitos adversos , Administração Intravenosa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/efeitos adversos , Criança , Pré-Escolar , Feminino , Alemanha , Humanos , Lactente , Lacosamida , Masculino , Pessoa de Meia-Idade , Convulsões/tratamento farmacológico , Estado Epiléptico/tratamento farmacológico , Adulto Jovem
13.
Neurology ; 83(23): 2183-7, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25361775

RESUMO

OBJECTIVE: We report a consanguineous family with 2 affected individuals whose clinical symptoms closely resembled MERRF (myoclonus epilepsy with ragged red fibers) syndrome including severe myoclonic epilepsy, progressive spastic tetraparesis, progressive impairment of vision and hearing, as well as progressive cognitive decline. METHODS: After excluding the presence of pathogenic mitochondrial DNA mutations, whole-exome sequencing of blood DNA from the index patient was performed. Detected homozygous mutations and their cosegregation were confirmed by Sanger sequencing. CARS2 (cysteinyl-tRNA synthetase 2, mitochondrial) messenger RNA analysis was performed by reverse transcription PCR and sequencing. RESULTS: We identified a homozygous c.655G>A mutation in the CARS2 gene cosegregating in the family. The mutation is localized at the last nucleotide of exon 6 and thus is predicted to cause aberrant splicing. Analysis of the CARS2 messenger RNA showed that the presence of the mutation resulted in removal of exon 6. This leads to an in-frame deletion of 28 amino acids in a conserved sequence motif of the protein involved in stabilization of the acceptor end hairpin of tRNA(Cys). CONCLUSION: CARS2 is a novel disease gene associated with a severe progressive myoclonic epilepsy most resembling MERRF syndrome.


Assuntos
Aminoacil-tRNA Sintetases/genética , Epilepsias Mioclônicas/genética , Síndrome MERRF/genética , Mutação/genética , Adulto , DNA Mitocondrial/genética , Epilepsias Mioclônicas/etiologia , Feminino , Homozigoto , Humanos , Síndrome MERRF/complicações , Síndrome MERRF/diagnóstico , Masculino , Mitocôndrias/genética , Linhagem , Splicing de RNA/genética , Adulto Jovem
14.
J Gene Med ; 16(11-12): 352-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25382123

RESUMO

BACKGROUND: Gene therapy appears to have the potential for achieving a long-term remedy for osteoarthritis (OA). However, there is a risk of adverse reactions, especially when using cytomegalovirus-controlled expression. To provide a safe application, we focused on the expression of therapeutic cytokines [e.g. interleukin (IL)-4] in a disease-responsive manner by use of the previously cloned Cox-2 promoter as 'genetic switch'. In the present study, we report the functionality of a controlled gene therapeutic system in an equine osteoarthritic cell model. METHODS: Different nonviral transfection reagents were tested for their efficiency on equine chondrocytes stimulated with equine IL-1ß or lipopolysaccharide to create an inflammatory environment. To optimize the transfection, we successfully redesigned the vector by excluding the internal ribosomal entry site (IRES). The functionality of our Cox-2 promoter construct with respect to expressing IL-4 was proven at the mRNA and protein levels and the anti-inflammatory potential of IL-4 was confirmed by analyzing the expression of IL-1ß, IL-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3 and tumor necrosis factor (TNF)-α using a quantitative polymerase chain reaction. RESULTS: Nonviral transfection reagents yielded transfection rates from 21% to 44% with control vectors with and without IRES, respectively. Stimulation of equine chondrocytes resulted in a 20-fold increase of mRNA expression of IL-1ß. Such exogenous stimulation of chondrocytes transfected with pNCox2-IL4 led to an increase of IL-4 mRNA expression, whereas expression of inflammatory mediators decreased. The timely link between these events confirms the anti-inflammatory potential of synthesized IL-4. CONCLUSIONS: We consider that this approach has significant potential for translation into a useful anti-inflammation therapy. Molecular tools such as the described therapeutic plasmid pave the way for a local-controlled, self-limiting gene therapy.


Assuntos
Ciclo-Oxigenase 2/genética , Terapia Genética , Interleucina-4/biossíntese , Osteoartrite/terapia , Transfecção , Animais , Células Cultivadas , Condrócitos/imunologia , Condrócitos/metabolismo , Regulação para Baixo , Expressão Gênica , Vetores Genéticos , Cavalos , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-4/genética , Lipopolissacarídeos/farmacologia , Osteoartrite/genética , Regiões Promotoras Genéticas
15.
Seizure ; 22(6): 483-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23601850

RESUMO

PURPOSE: The group of the rare progressive myoclonic epilepsies (PME) include a wide spectrum of mitochondrial and metabolic diseases. In juvenile and adult ages, MERRF (myoclonic epilepsy with ragged red fibres) is the most common form. The underlying genetic defect in most patients with the syndrome of MERRF is a mutation in the tRNALys gene, but mutations were also detected in the tRNAPhe gene. METHOD: Here, we describe a 40 year old patient with prominent myoclonic seizures since 39 years of age without a mutation in the known genes who underwent intensive clinical, genetic and functional workup. RESULTS: The patient had a slight mental retardation and a severe progressive hearing loss based on a defect of the inner ear on both sides. Ictal electroencephalography (EEG) showed bilateral occipital and generalized spikes and polyspikes induced and aggravated by photostimulation. A cranial magnetic resonance imaging (cMRI) detected a global cortical atrophy of the brain and mild periventricular white matter lesions. The electromyography (EMG) was normal but the muscle biopsy showed abundant ragged red fibres. Sequencing of the mitochondrial DNA from the skeletal muscle biopsy revealed a novel heteroplasmic mutation (m.4279A>G) in the tRNAIle gene which was functionally relevant as tested in single skeletal muscle fibre investigations. CONCLUSION: Mutations in tRNAIle were described in patients with chronic progressive external ophthalmoplegia (CPEO), prominent deafness or cardiomyopathy but, up to now, not in patients with myoclonic epilepsy. The degree of heteroplasmy of this novel mitochondrial DNA mutation was 70% in skeletal muscle but only 15% in blood, pointing to the diagnostic importance of a skeletal muscle biopsy also in patients with myoclonic epilepsy.


Assuntos
Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Mutação/genética , Epilepsias Mioclônicas Progressivas/genética , RNA de Transferência/genética , Adulto , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/ultraestrutura
16.
Adv Exp Med Biol ; 686: 305-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20824453

RESUMO

Ion channelopathies are caused by malfunction or altered regulation of ion channel proteins due to hereditary or acquired protein changes. In neurology, main phenotypes include certain forms of epilepsy, ataxia, migraine, neuropathic pain, myotonia, and muscle weakness including myasthenia and periodic paralyses. The total prevalence of monogenic channelopathies in neurology is about 35:100,000. Susceptibility-related mutations further increase the relevance of channel genes in medicine considerably. As many disease mechanisms have been elucidated by functional characterization on the molecular level, the channelopathies are regarded as model disorders for pathogenesis and treatment of non-monogenic forms of epilepsy and migraine. As more than 35% of marketed drugs target ion channels, there is a high chance to identify compounds that counteract the effects of the mutations.


Assuntos
Canais Iônicos/genética , Doenças do Sistema Nervoso/genética , Doenças Raras/genética , Ataxia/genética , Epilepsia/genética , Humanos , Síndrome de Isaacs/genética , Hipertermia Maligna/genética , Transtornos de Enxaqueca/genética , Mutação , Síndromes Miastênicas Congênitas/genética , Miopatia da Parte Central/genética , Miotonia Congênita/genética , Neuralgia/genética , Paralisias Periódicas Familiares/genética , Reflexo Anormal/genética , Reflexo de Sobressalto/genética
17.
Epilepsia ; 51(12): 2453-6, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21204805

RESUMO

Early onset absence epilepsy (EOAE) starting before the age of 4 years constitutes a rare subgroup of the idiopathic generalized epilepsies (IGEs). A strong genetic component in IGE has been suggested by twin and family studies. We describe a boy with absence seizures starting at the age of 9 months whose parents both had childhood absence epilepsy. A 192-kb duplication in 1q21.3 was identified in the proband and his father, encompassing the gene CHRNB2 coding for the ß-2 subunit of the nicotinic acetylcholine receptor and the gene ADAR coding for adenosine deaminase, an enzyme responsible for RNA editing. Both are candidate genes for seizure disorders. The duplication was not identified in 191 independent IGE patients (93 EOAE; 98 classical IGE) or in 1,157 population controls.


Assuntos
Cromossomos Humanos Par 1/genética , Epilepsia Tipo Ausência/genética , Duplicação Gênica/genética , Adenosina Desaminase/genética , Adolescente , Epilepsia Tipo Ausência/diagnóstico , Epilepsia Generalizada/genética , Família , Feminino , Humanos , Masculino , Linhagem , Proteínas de Ligação a RNA , Receptores Nicotínicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA