Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genetics ; 223(2)2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36449523

RESUMO

Early-life malnutrition increases adult disease risk in humans, but the causal changes in gene regulation, signaling, and metabolism are unclear. In the roundworm Caenorhabditis elegans, early-life starvation causes well-fed larvae to develop germline tumors and other gonad abnormalities as adults. Furthermore, reduced insulin/IGF signaling during larval development suppresses these starvation-induced abnormalities. How early-life starvation and insulin/IGF signaling affect adult pathology is unknown. We show that early-life starvation has pervasive effects on adult gene expression which are largely reversed by reduced insulin/IGF signaling following recovery from starvation. Early-life starvation increases adult fatty-acid synthetase fasn-1 expression in daf-2 insulin/IGF signaling receptor-dependent fashion, and fasn-1/FASN promotes starvation-induced abnormalities. Lipidomic analysis reveals increased levels of phosphatidylcholine in adults subjected to early-life starvation, and supplementation with unsaturated phosphatidylcholine during development suppresses starvation-induced abnormalities. Genetic analysis of fatty-acid desaturases reveals positive and negative effects of desaturation on development of starvation-induced abnormalities. In particular, the ω3 fatty-acid desaturase fat-1 and the Δ5 fatty-acid desaturase fat-4 inhibit and promote development of abnormalities, respectively. fat-4 is epistatic to fat-1, suggesting that arachidonic acid-containing lipids promote development of starvation-induced abnormalities, and supplementation with ARA enhanced development of abnormalities. This work shows that early-life starvation and insulin/IGF signaling converge on regulation of adult lipid metabolism, affecting stem-cell proliferation and tumor formation.


Assuntos
Proteínas de Caenorhabditis elegans , Inanição , Humanos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo dos Lipídeos , Insulina/metabolismo , Inanição/genética
2.
PLoS Genet ; 17(7): e1009650, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34288923

RESUMO

Quiescence, an actively-maintained reversible state of cell cycle arrest, is not well understood. PTEN is one of the most frequently lost tumor suppressors in human cancers and regulates quiescence of stem cells and cancer cells. The sole PTEN ortholog in Caenorhabditis elegans is daf-18. In a C. elegans loss-of-function mutant for daf-18, primordial germ cells (PGCs) divide inappropriately in L1 larvae hatched into starvation conditions, in a TOR-dependent manner. Here, we further investigated the role of daf-18 in maintaining PGC quiescence in L1 starvation. We found that maternal or zygotic daf-18 is sufficient to maintain cell cycle quiescence, that daf-18 acts in the germ line and soma, and that daf-18 affects timing of PGC divisions in fed animals. Importantly, our results also implicate daf-18 in repression of germline zygotic gene activation, though not in germline fate specification. However, TOR is less important to germline zygotic gene expression, suggesting that in the absence of food, daf-18/PTEN prevents inappropriate germline zygotic gene activation and cell division by distinct mechanisms.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Células Germinativas/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Divisão Celular/genética , Proliferação de Células/genética , Larva/genética , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/genética , Ativação Transcricional/genética , Zigoto/metabolismo
3.
Curr Biol ; 29(14): 2380-2388.e5, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31280992

RESUMO

The roundworm C. elegans reversibly arrests larval development during starvation [1], but extended early-life starvation reduces reproductive success [2, 3]. Maternal dietary restriction (DR) buffers progeny from starvation as young larvae, preserving reproductive success [4]. However, the developmental basis of reduced fertility following early-life starvation is unknown, and it is unclear how maternal diet modifies developmental physiology in progeny. We show here that extended starvation in first-stage (L1) larvae followed by unrestricted feeding results in a variety of developmental abnormalities in the reproductive system, including proliferative germ-cell tumors and uterine masses that express neuronal and epidermal cell fate markers. We found that maternal DR and reduced maternal insulin/insulin-like growth factor (IGF) signaling (IIS) increase oocyte provisioning of vitellogenin lipoprotein, reducing penetrance of starvation-induced abnormalities in progeny, including tumors. Furthermore, we show that maternal DR and reduced maternal IIS reduce IIS in progeny. daf-16/FoxO and skn-1/Nrf, transcriptional effectors of IIS, are required in progeny for maternal DR and increased vitellogenin provisioning to suppress starvation-induced abnormalities. daf-16/FoxO activity in somatic tissues is sufficient to suppress starvation-induced abnormalities, suggesting cell-nonautonomous regulation of reproductive system development. This work reveals that early-life starvation compromises reproductive development and that vitellogenin-mediated intergenerational insulin/IGF-to-insulin/IGF signaling mediates adaptation to nutrient availability.


Assuntos
Adaptação Fisiológica , Caenorhabditis elegans/fisiologia , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Nutrientes/fisiologia , Somatomedinas/metabolismo , Vitelogeninas/metabolismo
4.
BMC Biol ; 16(1): 112, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30296941

RESUMO

BACKGROUND: Developmental physiology is very sensitive to nutrient availability. For instance, in the nematode Caenorhabditis elegans, newly hatched L1-stage larvae require food to initiate postembryonic development. In addition, larvae arrested in the dauer diapause, a non-feeding state of developmental arrest that occurs during the L3 stage, initiate recovery when exposed to food. Despite the essential role of food in C. elegans development, the contribution of food perception versus ingestion on physiology has not been delineated. RESULTS: We used a pharmacological approach to uncouple the effects of food (bacteria) perception and ingestion in C. elegans. Perception was not sufficient to promote postembryonic development in L1-stage larvae. However, L1 larvae exposed to food without ingestion failed to develop upon return to normal culture conditions, instead displaying an irreversible arrest phenotype. Inhibition of gene expression during perception rescued subsequent development, demonstrating that the response to perception without feeding is deleterious. Perception altered DAF-16/FOXO subcellular localization, reflecting activation of insulin/IGF signaling (IIS). The insulin-like peptide daf-28 was specifically required, suggesting perception in chemosensory neurons, where it is expressed, regulates peptide synthesis and possibly secretion. However, genetic manipulation of IIS did not modify the irreversible arrest phenotype caused by food perception, revealing that wild-type function of the IIS pathway is not required to produce this phenotype and that other pathways affected by perception of food in the absence of its ingestion are likely to be involved. Gene expression and Nile red staining showed that food perception could alter lipid metabolism and storage. We found that starved larvae sense environmental polypeptides, with similar molecular and developmental effects as perception of bacteria. Environmental polypeptides also promoted recovery from dauer diapause, suggesting that perception of polypeptides plays an important role in the life history of free-living nematodes. CONCLUSIONS: We conclude that actual ingestion of food is required to initiate postembryonic development in C. elegans. We also conclude that polypeptides are perceived as a food-associated cue in this and likely other animals, initiating a signaling and gene regulatory cascade that alters metabolism in anticipation of feeding and development, but that this response is detrimental if feeding does not occur.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Ivermectina/administração & dosagem , Peptídeos/fisiologia , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Sinais (Psicologia) , Alimentos , Insulina/metabolismo , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Transdução de Sinais/efeitos dos fármacos , Somatomedinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA