Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Transl Med ; 22(1): 320, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555449

RESUMO

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.


Assuntos
Barreira Hematoencefálica , Glioma , Humanos , Ratos , Criança , Masculino , Camundongos , Animais , Modelos Animais de Doenças , Ratos Sprague-Dawley , Tronco Encefálico , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Glioma/radioterapia , Microbolhas , Encéfalo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38364947

RESUMO

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.

3.
J Pediatr Hematol Oncol ; 45(4): e525-e529, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730589

RESUMO

Beckwith-Wiedemann syndrome (BWS) is an epigenetic overgrowth disorder and cancer predisposition syndrome caused by imprinting defects of chromosome 11p15.5-11p15.4. BWS should be considered in children with atypical presentations of embryonal tumors regardless of clinical phenotype. Risk of malignancy correlates with specific molecular subgroups of BWS making molecular subclassification important for appropriate cancer screening. We report the first case of concurrent embryonal tumors in a phenotypically normal child, leading to the diagnosis of BWS with paternal uniparental disomy and describe the molecular classification of BWS as it relates to malignancy risk, along with approach to management.


Assuntos
Síndrome de Beckwith-Wiedemann , Hepatoblastoma , Neoplasias Renais , Neoplasias Hepáticas , Neoplasias Embrionárias de Células Germinativas , Tumor de Wilms , Humanos , Síndrome de Beckwith-Wiedemann/complicações , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Hepatoblastoma/etiologia , Hepatoblastoma/genética , Impressão Genômica , Tumor de Wilms/diagnóstico , Tumor de Wilms/genética , Fenótipo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Neoplasias Renais/genética , Neoplasias Embrionárias de Células Germinativas/genética , Metilação de DNA
5.
J Clin Med ; 10(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575167

RESUMO

Children with CML need TKI treatment for many years, and the lack of knowledge about immune dysfunction with TKI has hindered routine immunizations. This review attempts to provide an overview of the effects of TKIs licensed for children (e.g., imatinib, dasatinib, and nilotinib) on immune function, as well as its implications on immunizations. We discuss surveillance strategies (e.g., immunoglobulin blood serum levels and hepatitis B reactivation) and immunizations. All inactivated vaccines (e.g., influenza, pneumococcal, and streptococcal) can be given during the treatment of CML in the chronic phase, although their efficacy may be lower. As shown in single cases of children and adults with CML, live vaccines (e.g., varicella, measles, mumps, rubella, and yellow fever) may be administered under defined circumstances with great precautions. We also highlight important aspects of COVID-19 in this patient population (e.g., the outcome of COVID-19 infection in adults with CML and in children with varying hemato-oncological diseases) and discuss the highly dynamic field of presently available different vaccination options. In conclusion, TKI treatment for CML causes humoral and cellular immune dysfunction, which is mild in most patients, and thus infectious complications are rare. Routine immunizations are important for health maintenance of children, but vaccinations for children with CML on TKI therapy should be carefully considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA