Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 28(15): 2705-15, 2010 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-20097152

RESUMO

Truncated recombinant dengue virus envelope protein subunits (80E) are efficiently expressed using the Drosophila Schneider-2 (S2) cell expression system. Binding of conformationally sensitive antibodies as well as X-ray crystal structural studies indicate that the recombinant 80E subunits are properly folded native-like proteins. Combining the 80E subunits from each of the four dengue serotypes with ISCOMATRIX adjuvant, an adjuvant selected from a set of adjuvants tested for maximal and long lasting immune responses, results in high titer virus neutralizing antibody responses. Immunization of mice with a mixture of all four 80E subunits and ISCOMATRIX adjuvant resulted in potent virus neutralizing antibody responses to each of the four serotypes. The responses to the components of the tetravalent mixture were equivalent to the responses to each of the subunits administered individually. In an effort to evaluate the potential protective efficacy of the Drosophila expressed 80E, the dengue serotype 2 (DEN2-80E) subunit was tested in both the mouse and monkey challenge models. In both models protection against viral challenge was achieved with low doses of antigen in the vaccine formulation. In non-human primates, low doses of the tetravalent formulation induced good virus neutralizing antibody titers to all four serotypes and protection against challenge with the two dengue virus serotypes tested. In contrast to previous reports, where subunit vaccine candidates have generally failed to induce potent, protective responses, native-like soluble 80E proteins expressed in the Drosophila S2 cells and administered with appropriate adjuvants are highly immunogenic and capable of eliciting protective responses in both mice and monkeys. These results support the development of a dengue virus tetravalent vaccine based on the four 80E subunits produced in the Drosophila S2 cell expression system.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Dengue/imunologia , Vírus da Dengue/imunologia , Dengue/prevenção & controle , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Linhagem Celular , Colesterol/administração & dosagem , Cristalografia por Raios X , Vírus da Dengue/química , Vírus da Dengue/genética , Modelos Animais de Doenças , Drosophila , Combinação de Medicamentos , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfolipídeos/administração & dosagem , Dobramento de Proteína , Estrutura Terciária de Proteína , Saponinas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
2.
Clin Vaccine Immunol ; 16(9): 1332-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641099

RESUMO

The immunogenicity and protective efficacy of a recombinant subunit West Nile virus (WNV) vaccine was evaluated in rhesus macaques (Macaca mulatta). The vaccine consisted of a recombinant envelope (E) protein truncated at the C-terminal end, resulting in a polypeptide containing 80% of the N-terminal amino acids of the native WNV protein (WN-80E), mixed with an adjuvant (GPI-0100). WN-80E was produced in a Drosophila melanogaster expression system with high yield and purified by immunoaffinity chromatography using a monoclonal antibody specific for flavivirus E proteins. Groups of monkeys were vaccinated with formulations containing 1 or 25 microg of WN-80E antigen, and both humoral and cellular immunity were assessed after vaccination. The results demonstrated potent antibody responses to vaccination, as determined by both enzyme-linked immunosorbent assay and virus-neutralizing antibody assays. All vaccinated animals responded favorably, and there was little difference in response between animals immunized with 1 or 25 microg of WN-80E. Cellular immunity was determined by lymphocyte proliferation and cytokine production assays using peripheral blood mononuclear cells from vaccinated animals stimulated in vitro with WN-80E. Cell-mediated immune responses varied from animal to animal within each group. About half of the animals responded with lymphoproliferation, cytokine production, or both. Again, there was little difference in response between animals immunized with a 1- or 25-microg dose of WN-80E in the vaccine formulations. In a separate experiment, groups of monkeys were immunized with the WN-80E/GPI-0100 vaccine or an adjuvant-only control formulation. Animals were then challenged by inoculation of wild-type WNV, and the level of viremia in each animal was monitored daily for 10 days. The results showed that whereas all animals in the control group had detectable viremia for at least 3 days after challenge, all of the vaccinated animals were negative on all days after challenge. Thus, the WN-80E vaccine was 100% efficacious in protecting monkeys against infection with WNV.


Assuntos
Vacinas contra o Vírus do Nilo Ocidental/imunologia , Animais , Anticorpos Antivirais/sangue , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Citocinas/metabolismo , Drosophila melanogaster , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Macaca mulatta , Masculino , Testes de Neutralização , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/imunologia , Viremia/prevenção & controle , Febre do Nilo Ocidental/prevenção & controle
3.
Avian Dis ; 53(4): 502-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20095149

RESUMO

West Nile virus (WNV) causes morbidity and mortality in humans, horses, and in more than 315 bird species in North America. Currently approved WNV vaccines are designed for parenteral administration and, as yet, no effectiveoral WNV vaccines have been developed. WNV envelope (E) protein is a highly antigenic protein that elicits the majority ofvirus-neutralizing antibodies during a WNV immune response. Leghorn chickens were given three vaccinations (each 2 wk apart) of E proteinorally (20 microg or 100 microg/dose), of E protein intramuscularly (IM, 20 microg/dose), or of adjuvant only (control group) followed by a WNV challenge. Viremias were measured post-WNV infection, and three new enzyme-linked immunosorbent assays were developed for quantifying IgM, IgY, and IgA-mediated immune response of birds following WNV infection. WNV viremia levelswere significantly lower in the IM group than in both oral groups and the control group. Total WNV E protein-specific IgY production w assignificantly greater, and WNV nonstructural 1-specific IgY w as significantly less, in the IM group compared to all other treatment groups.The results of this study indicate that IM vaccination of chickens with E protein is protective against WNV infection and results in a significantly different antibody production profile as compared to both orally vaccinated and nonvaccinated birds.


Assuntos
Galinhas , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Febre do Nilo Ocidental/veterinária , Administração Oral , Animais , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , Injeções Intramusculares , Masculino , Vacinas Virais/administração & dosagem , Viremia/veterinária , Febre do Nilo Ocidental/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA