Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Chem Biol ; 31(3): 550-564.e9, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38086369

RESUMO

The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.


Assuntos
Cisteína , Histonas , Cisteína/metabolismo , Histonas/metabolismo , Cromatina , Proteínas Nucleares/metabolismo , Ciclo Celular
2.
ACS Chem Biol ; 19(1): 193-207, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38159293

RESUMO

S-Nitrosation is a cysteine post-translational modification fundamental to cellular signaling. This modification regulates protein function in numerous biological processes in the nervous, cardiovascular, and immune systems. Small molecule or protein nitrosothiols act as mediators of NO signaling by transferring the NO group (formally NO+) to a free thiol on a target protein through a transnitrosation reaction. The protein targets of specific transnitrosating agents and the extent and functional effects of S-nitrosation on these target proteins have been poorly characterized. S-nitroso-coenzyme A (CoA-SNO) was recently identified as a mediator of endogenous S-nitrosation. Here, we identified direct protein targets of CoA-SNO-mediated transnitrosation using a competitive chemical-proteomic approach that quantified the extent of modification on 789 cysteine residues in response to CoA-SNO. A subset of cysteines displayed high susceptibility to modification by CoA-SNO, including previously uncharacterized sites of S-nitrosation. We further validated and functionally characterized the functional effects of S-nitrosation on the protein targets phosphofructokinase (platelet type), ATP citrate synthase, and ornithine aminotransferase.


Assuntos
Coenzima A , Cisteína , S-Nitrosotióis , Nitrosação , Cisteína/química , Proteômica , Proteínas/metabolismo , S-Nitrosotióis/química , S-Nitrosotióis/metabolismo , Óxido Nítrico/metabolismo
3.
J Am Chem Soc ; 145(37): 20189-20195, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37647087

RESUMO

Sulfation widely exists in the eukaryotic proteome. However, understanding the biological functions of sulfation in peptides and proteins has been hampered by the lack of methods to control its spatial or temporal distribution in the proteome. Herein, we report that fluorosulfate can serve as a latent precursor of sulfate in peptides and proteins, which can be efficiently converted to sulfate by hydroxamic acid reagents under physiologically relevant conditions. Photocaging the hydroxamic acid reagents further allowed for the light-controlled activation of functional sulfopeptides. This work provides a valuable tool for probing the functional roles of sulfation in peptides and proteins.


Assuntos
Proteoma , Sulfatos , Peptídeos , Eucariotos , Ácidos Hidroxâmicos , Óxidos de Enxofre
4.
ACS Chem Biol ; 18(9): 1909-1914, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37561838

RESUMO

The natural product holomycin contains a unique cyclic ene-disulfide and exhibits broad-spectrum antimicrobial activities. Reduced holomycin chelates metal ions with a high affinity and disrupts metal homeostasis in the cell. To identify cellular metalloproteins inhibited by holomycin, reactive-cysteine profiling was performed using isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). This chemoproteomic analysis demonstrated that holomycin treatment increases the reactivity of metal-coordinating cysteine residues in several zinc-dependent and iron-sulfur cluster-dependent enzymes, including carbonic anhydrase II and fumarase A. We validated that holomycin inhibits fumarase A activity in bacterial cells and diminishes the presence of iron-sulfur clusters in fumarase A. Whole-proteome abundance analysis revealed that holomycin treatment induces zinc and iron starvation and cellular stress. This study suggests that holomycin inhibits bacterial growth by impairing the functions of multiple metalloenzymes and sets the stage for investigating the impact of metal-binding molecules on metalloproteomes by using chemoproteomics.


Assuntos
Antibacterianos , Metaloproteínas , Antibacterianos/farmacologia , Metaloproteínas/química , Metaloproteínas/metabolismo , Cisteína , Metais/química , Zinco , Ferro , Homeostase
5.
Antioxidants (Basel) ; 12(5)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37237858

RESUMO

The mitochondrion is the primary energy generator of a cell and is a central player in cellular redox regulation. Mitochondrial reactive oxygen species (mtROS) are the natural byproducts of cellular respiration that are critical for the redox signaling events that regulate a cell's metabolism. These redox signaling pathways primarily rely on the reversible oxidation of the cysteine residues on mitochondrial proteins. Several key sites of this cysteine oxidation on mitochondrial proteins have been identified and shown to modulate downstream signaling pathways. To further our understanding of mitochondrial cysteine oxidation and to identify uncharacterized redox-sensitive cysteines, we coupled mitochondrial enrichment with redox proteomics. Briefly, differential centrifugation methods were used to enrich for mitochondria. These purified mitochondria were subjected to both exogenous and endogenous ROS treatments and analyzed by two redox proteomics methods. A competitive cysteine-reactive profiling strategy, termed isoTOP-ABPP, enabled the ranking of the cysteines by their redox sensitivity, due to a loss of reactivity induced by cysteine oxidation. A modified OxICAT method enabled a quantification of the percentage of reversible cysteine oxidation. Initially, we assessed the cysteine oxidation upon treatment with a range of exogenous hydrogen peroxide concentrations, which allowed us to differentiate the mitochondrial cysteines by their susceptibility to oxidation. We then analyzed the cysteine oxidation upon inducing reactive oxygen species generation via the inhibition of the electron transport chain. Together, these methods identified the mitochondrial cysteines that were sensitive to endogenous and exogenous ROS, including several previously known redox-regulated cysteines and uncharacterized cysteines on diverse mitochondrial proteins.

6.
Cell Chem Biol ; 30(3): 321-336.e6, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889310

RESUMO

Reactive oxygen species (ROS) can modulate protein function through cysteine oxidation. Identifying protein targets of ROS can provide insight into uncharacterized ROS-regulated pathways. Several redox-proteomic workflows, such as oxidative isotope-coded affinity tags (OxICAT), exist to identify sites of cysteine oxidation. However, determining ROS targets localized within subcellular compartments and ROS hotspots remains challenging with existing workflows. Here, we present a chemoproteomic platform, PL-OxICAT, which combines proximity labeling (PL) with OxICAT to monitor localized cysteine oxidation events. We show that TurboID-based PL-OxICAT can monitor cysteine oxidation events within subcellular compartments such as the mitochondrial matrix and intermembrane space. Furthermore, we use ascorbate peroxidase (APEX)-based PL-OxICAT to monitor oxidation events within ROS hotspots by using endogenous ROS as the source of peroxide for APEX activation. Together, these platforms further hone our ability to monitor cysteine oxidation events within specific subcellular locations and ROS hotspots and provide a deeper understanding of the protein targets of endogenous and exogenous ROS.


Assuntos
Cisteína , Proteômica , Cisteína/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas/metabolismo
7.
Nat Chem Biol ; 19(3): 356-366, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635565

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous metallocofactors involved in redox chemistry, radical generation and gene regulation. Common methods to monitor Fe-S clusters include spectroscopic analysis of purified proteins and autoradiographic visualization of radiolabeled iron distribution in proteomes. Here, we report a chemoproteomic strategy that monitors changes in the reactivity of Fe-S cysteine ligands to inform on Fe-S cluster occupancy. We highlight the utility of this platform in Escherichia coli by (1) demonstrating global disruptions in Fe-S incorporation in cells cultured under iron-depleted conditions, (2) determining Fe-S client proteins reliant on five scaffold, carrier and chaperone proteins within the Isc Fe-S biogenesis pathway and (3) identifying two previously unannotated Fe-S proteins, TrhP and DppD. In summary, the chemoproteomic strategy described herein is a powerful tool that reports on Fe-S cluster incorporation directly within a native proteome, enabling the interrogation of Fe-S biogenesis pathways and the identification of previously uncharacterized Fe-S proteins.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Humanos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Chaperonas Moleculares , Proteoma/metabolismo , Proteômica
8.
ACS Chem Biol ; 17(10): 2789-2800, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36190452

RESUMO

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a cancer predisposition syndrome driven by mutation of the tumor suppressor fumarate hydratase (FH). Inactivation of FH causes accumulation of the electrophilic oncometabolite fumarate. In the absence of methods for reactivation, tumor suppressors can be targeted via identification of synthetic lethal interactions using genetic screens. Inspired by recent advances in chemoproteomic target identification, here, we test the hypothesis that the electrophilicity of the HLRCC metabolome may produce unique susceptibilities to covalent small molecules, a phenomenon we term conditional covalent lethality. Screening a panel of chemically diverse electrophiles, we identified a covalent ligand, MP-1, that exhibits FH-dependent cytotoxicity. Synthesis and structure-activity profiling identified key molecular determinants underlying the molecule's effects. Chemoproteomic profiling of cysteine reactivity together with clickable probes validated the ability of MP-1 to engage an array of functional cysteines, including one lying in the Zn-finger domain of the tRNA methyltransferase enzyme TRMT1. TRMT1 overexpression rescues tRNA methylation from inhibition by MP-1 and partially attenuates the covalent ligand's cytotoxicity. Our studies highlight the potential for covalent metabolites and small molecules to synergistically produce novel synthetic lethal interactions and raise the possibility of applying phenotypic screening with chemoproteomic target identification to identify new functional oncometabolite targets.


Assuntos
Fumarato Hidratase , Síndromes Neoplásicas Hereditárias , Humanos , Cisteína , Ligantes , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/metabolismo , Fumaratos , tRNA Metiltransferases , RNA de Transferência
9.
Infect Immun ; 90(8): e0020522, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35913173

RESUMO

The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.


Assuntos
Toxoplasma , Toxoplasmose , Basigina , Escherichia coli , Humanos , Proteômica
10.
RSC Chem Biol ; 3(7): 972-982, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35866162

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a central enzyme in glycolysis that regulates the Warburg effect in cancer cells. In addition to its role in metabolism, GAPDH is also implicated in diverse cellular processes, including transcription and apoptosis. Dysregulated GAPDH activity is associated with a variety of pathologies, and GAPDH inhibitors have demonstrated therapeutic potential as anticancer and immunomodulatory agents. Given the critical role of GAPDH in pathophysiology, it is important to have access to tools that enable rapid monitoring of GAPDH activity and inhibition within a complex biological system. Here, we report an electrophilic peptide-based probe, SEC1, which covalently modifies the active-site cysteine, C152, of GAPDH to directly report on GAPDH activity within a proteome. We demonstrate the utility of SEC1 to assess changes in GAPDH activity in response to oncogenic transformation, reactive oxygen species (ROS) and small-molecule GAPDH inhibitors, including Koningic acid (KA). We then further evaluated KA, to determine the detailed mechanism of inhibition. Our mechanistic studies confirm that KA is a highly effective irreversible inhibitor of GAPDH, which acts through a NAD+-uncompetitive and G3P-competitive mechanism. Proteome-wide evaluation of the cysteine targets of KA demonstrated high selectivity for the active-site cysteine of GAPDH over other reactive cysteines within the proteome. Lastly, the therapeutic potential of KA was investigated in an autoimmune model, where treatment with KA resulted in decreased cytokine production by Th1 effector cells. Together, these studies describe methods to evaluate GAPDH activity and inhibition within a proteome, and report on the high potency and selectivity of KA as an irreversible inhibitor of GAPDH.

11.
Nat Chem Biol ; 18(7): 698-705, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332331

RESUMO

Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections. Reactive oxygen species can drive tumor formation, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.


Assuntos
Cisteína Endopeptidases , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Transformação Celular Neoplásica/metabolismo , Cisteína/metabolismo , Cisteína Endopeptidases/metabolismo , Humanos , Oxirredução , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
12.
Methods Enzymol ; 662: 143-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101208

RESUMO

Selenoproteins, which contain the 21st amino acid selenocysteine, play roles in maintaining cellular redox homeostasis. Many open questions remain in the field of selenoprotein biology, including the functions of a number of uncharacterized human selenoproteins, and the properties of selenocysteine compared to its analogous amino acid cysteine. The mechanism of selenocysteine incorporation involves an intricate machinery that deviates from the mechanism of incorporation for the canonical 20 amino acids. As a result, recombinant expression of selenoproteins has been historically challenging, and has hindered a deeper evaluation of selenoprotein biology. Genetic code expansion methods, which incorporate protected analogs of selenocysteine, allow the endogenous selenocysteine incorporation mechanism to be bypassed entirely to facilitate selenoprotein expression. Here we present a method for incorporating a photocaged selenocysteine amino acid (DMNB-Sec) into human selenoproteins directly in mammalian cells. This approach offers the opportunity to study human selenoproteins in their native cellular environment and should advance our understanding of selenoprotein biology.


Assuntos
Selenocisteína , Selenoproteínas , Animais , Cisteína/metabolismo , Código Genético , Humanos , Mamíferos/genética , Biossíntese de Proteínas , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
13.
Methods Enzymol ; 662: 187-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101210

RESUMO

Selenoproteins comprise a small group of selenocysteine (Sec) containing proteins, often involved in redox homeostasis. While Sec is functionally similar to cysteine (Cys), with both acting as protein-centered nucleophiles, chemoproteomic strategies employing electrophilic probes have often failed to rigorously identify Sec residues, due to their relatively low abundance with respect to Cys across a proteome. To improve the enrichment and detection of selenoproteins, herein we describe a chemoproteomic strategy that relies on the unique properties of Sec as compared to Cys, such as reduced pKa and the unique isotopic distribution of selenium. Low pH electrophilic probe labeling of mouse proteomes reduces Cys reactivity, resulting in increased identification of most soluble selenoproteins. This quantitative chemoproteomic platform provides a method to reliably measure changes in selenoprotein abundance across growth conditions as well as quantify inhibition by selenoprotein specific inhibitors, such as Auranofin.


Assuntos
Selênio , Selenocisteína , Animais , Cisteína/química , Concentração de Íons de Hidrogênio , Camundongos , Proteoma , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo
14.
Biochemistry ; 60(38): 2902-2914, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491035

RESUMO

Citrullination is an enzyme-catalyzed post-translational modification (PTM) that is essential for a host of biological processes, including gene regulation, programmed cell death, and organ development. While this PTM is required for normal cellular functions, aberrant citrullination is a hallmark of autoimmune disorders as well as cancer. Although aberrant citrullination is linked to human pathology, the exact role of citrullination in disease remains poorly characterized, in part because of the challenges associated with identifying the specific arginine residues that are citrullinated. Tandem mass spectrometry is the most precise method for uncovering sites of citrullination; however, due to the small mass shift (+0.984 Da) that results from citrullination, current database search algorithms commonly misannotate spectra, leading to a high number of false-positive assignments. To address this challenge, we developed an automated workflow to rigorously and rapidly mine proteomic data to unambiguously identify the sites of citrullination from complex peptide mixtures. The crux of this streamlined workflow is the ionFinder software program, which classifies citrullination sites with high confidence on the basis of the presence of diagnostic fragment ions. These diagnostic ions include the neutral loss of isocyanic acid, which is a dissociative event that is unique to citrulline residues. Using the ionFinder program, we have mapped the sites of autocitrullination on purified protein arginine deiminases (PAD1-4) and mapped the global citrullinome in a PAD2-overexpressing cell line. The ionFinder algorithm is a highly versatile, user-friendly, and open-source program that is agnostic to the type of instrument and mode of fragmentation that are used.


Assuntos
Citrulinação/fisiologia , Mineração de Dados/métodos , Proteômica/métodos , Algoritmos , Arginina/metabolismo , Citrulinação/genética , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Análise de Dados , Gerenciamento de Dados/métodos , Humanos , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Desiminases de Arginina em Proteínas/genética , Desiminases de Arginina em Proteínas/metabolismo , Espectrometria de Massas em Tandem/métodos
15.
RSC Chem Biol ; 2(2): 577-591, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458801

RESUMO

The reactivity profile of atomic oxygen [O(3P)] in the condensed phase has shown a preference for the thiol group of cysteines. In this work, water-soluble O(3P)-precursors were synthesized by adding aromatic burdens and water-soluble sulphonic acid groups to the core structure of dibenzothiophene-S-oxide (DBTO) to study O(3P) reactivity in cell lysates and live cells. The photodeoxygenation of these compounds was investigated using common intermediates, which revealed that an increase in aromatic burdens to the DBTO core structure decreases the total oxidation yield due to competitive photodeoxygenation mechanisms. These derivatives were then tested in cell lysates and live cells to profile changes in cysteine reactivity using the isoTOP-ABPP chemoproteomics platform. The results from this analysis indicated that O(3P) significantly affects cysteine reactivity in the cell. Additionally, O(3P) was found to oxidize cysteines within peptide sequences with leucine and serine conserved at the sites surrounding the oxidized cysteine. O(3P) was also found to least likely oxidize cysteines among membrane proteins.

16.
Nat Commun ; 12(1): 3910, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162877

RESUMO

Citrullination is the conversion of arginine-to-citrulline by protein arginine deiminases (PADs), whose dysregulation is implicated in the pathogenesis of various types of cancers and autoimmune diseases. Consistent with the ability of human cytomegalovirus (HCMV) to induce post-translational modifications of cellular proteins to gain a survival advantage, we show that HCMV infection of primary human fibroblasts triggers PAD-mediated citrullination of several host proteins, and that this activity promotes viral fitness. Citrullinome analysis reveals significant changes in deimination levels of both cellular and viral proteins, with interferon (IFN)-inducible protein IFIT1 being among the most heavily deiminated one. As genetic depletion of IFIT1 strongly enhances HCMV growth, and in vitro IFIT1 citrullination impairs its ability to bind to 5'-ppp-RNA, we propose that viral-induced IFIT1 citrullination is a mechanism of HCMV evasion from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection.


Assuntos
Citomegalovirus/metabolismo , Fibroblastos/metabolismo , Processamento de Proteína Pós-Traducional , Replicação Viral , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Citrulinação , Citomegalovirus/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/virologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Resistência a Myxovirus/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células Vero , Proteínas Virais/metabolismo
17.
ACS Med Chem Lett ; 11(10): 1913-1918, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33062173

RESUMO

The small molecule gibberellin JRA-003 was identified as an inhibitor of the NF-kB (nuclear kappa-light-chain-enhancer of activated B cells) pathway. Here we find that JRA-003 binds to and significantly inhibits the nuclear translocation of pathway-activating kinases IKKα (IκB kinase alpha) and IKKß (IκB kinase beta). Analogs of JRA-003 were synthesized and NF-κB-inhibiting gibberellins were found to be cytotoxic in cancer-derived cell lines (HS 578T, HCC 1599, RC-K8, Sud-HL4, CA 46, and NCIH 4466). Not only was JRA-003 identified as the most potent synthetic gibberellin against cancer-derived cell lines, it displayed no cytotoxicity in cells derived from noncancerous sources (HEK 293T, HS 578BST, HS 888Lu, HS 895Sk, HUVEC). This selectivity suggests a promising approach for the development of new therapeutics.

18.
J Biol Chem ; 295(39): 13410-13418, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32820045

RESUMO

An important context in which metabolism influences tumorigenesis is the genetic cancer syndrome hereditary leiomyomatosis and renal cell carcinoma (HLRCC), a disease in which mutation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) causes hyperaccumulation of fumarate. This electrophilic oncometabolite can alter gene activity at the level of transcription, via reversible inhibition of epigenetic dioxygenases, as well as posttranslationally, via covalent modification of cysteine residues. To better understand the potential for metabolites to influence posttranslational modifications important to tumorigenesis and cancer cell growth, here we report a chemoproteomic analysis of a kidney-derived HLRCC cell line. Using a general reactivity probe, we generated a data set of proteomic cysteine residues sensitive to the reduction in fumarate levels caused by genetic reintroduction of active FH into HLRCC cell lines. This revealed a broad up-regulation of cysteine reactivity upon FH rescue, which evidence suggests is caused by an approximately equal proportion of transcriptional and posttranslational modification-mediated regulation. Gene ontology analysis highlighted several new targets and pathways potentially modulated by FH mutation. Comparison of the new data set with prior studies highlights considerable heterogeneity in the adaptive response of cysteine-containing proteins in different models of HLRCC. This is consistent with emerging studies indicating the existence of cell- and tissue-specific cysteine-omes, further emphasizing the need for characterization of diverse models. Our analysis provides a resource for understanding the proteomic adaptation to fumarate accumulation and a foundation for future efforts to exploit this knowledge for cancer therapy.


Assuntos
Cisteína/metabolismo , Fumarato Hidratase/metabolismo , Fumaratos/metabolismo , Neoplasias Renais/metabolismo , Leiomiomatose/metabolismo , Síndromes Neoplásicas Hereditárias/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Uterinas/metabolismo , Linhagem Celular Tumoral , Cisteína/genética , Fumarato Hidratase/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Leiomiomatose/genética , Leiomiomatose/patologia , Síndromes Neoplásicas Hereditárias/genética , Síndromes Neoplásicas Hereditárias/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia
19.
ACS Chem Biol ; 15(2): 543-553, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31899610

RESUMO

The endoplasmic reticulum (ER) is the initial site of biogenesis of secretory pathway proteins, including proteins localized to the ER, Golgi, lysosomes, intracellular vesicles, plasma membrane, and extracellular compartments. Proteins within the secretory pathway contain a high abundance of disulfide bonds to protect against the oxidative extracellular environment. These disulfide bonds are typically formed within the ER by a variety of oxidoreductases, including members of the protein disulfide isomerase (PDI) family. Here, we establish chemoproteomic platforms to identify oxidized and reduced cysteine residues within the ER. Subcellular fractionation methods were utilized to enrich for the ER and significantly enhance the coverage of ER-localized cysteine residues. Reactive-cysteine profiling ranked ∼900 secretory pathway cysteines by reactivity with an iodoacetamide-alkyne probe, revealing functional cysteines annotated to participate in disulfide bonds, or S-palmitoylation sites within proteins. Through application of a variation of the OxICAT protocol for quantifying cysteine oxidation, the percentages of oxidation for each of ∼700 ER-localized cysteines were calculated. Lastly, perturbation of ER function, through chemical induction of ER stress, was used to investigate the effect of initiation of the unfolded protein response (UPR) on ER-localized cysteine oxidation. Together, these studies establish a platform for identifying reactive and functional cysteine residues on proteins within the secretory pathway as well as for interrogating the effects of diverse cellular stresses on ER-localized cysteine oxidation.


Assuntos
Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Proteoma/metabolismo , Alcinos/química , Linhagem Celular Tumoral , Cisteína/química , Humanos , Indicadores e Reagentes/química , Iodoacetamida/química , Lipoilação , Oxirredução , Proteoma/química , Proteômica , Tapsigargina/farmacologia , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
20.
Acc Chem Res ; 52(10): 2832-2840, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31523956

RESUMO

Selenoproteins are the family of proteins that contain the amino acid selenocysteine. Many selenoproteins, including glutathione peroxidases and thioredoxin reductases, play a role in maintaining cellular redox homeostasis. There are a number of examples of homologues of selenoproteins that utilize cysteine residues, raising the question of why selenocysteines are utilized. One hypothesis is that incorporation of selenocysteine protects against irreversible overoxidation, typical of cysteine-containing homologues under high oxidative stress. Studies of selenocysteine function are hampered by challenges both in detection and in recombinant expression of selenoproteins. In fact, about half of the 25 known human selenoproteins remain uncharacterized. Historically, selenoproteins were first detected via labeling with radioactive 75Se or by use of inductively coupled plasma-mass spectrometry to monitor nonradioactive selenium. More recently, tandem mass-spectrometry techniques have been developed to detect selenocysteine-containing peptides. For example, the isotopic distribution of selenium has been used as a unique signature to identify selenium-containing peptides from unenriched proteome samples. Additionally, selenocysteine-containing proteins and peptides were selectively enriched using thiol-reactive electrophiles by exploiting the increased reactivity of selenols relative to thiols, especially under low pH conditions. Importantly, the reactivity-based enrichment of selenoproteins can differentiate between oxidized and reduced selenoproteins, providing insight into the activity state. These mass spectrometry-based selenoprotein detection approaches have enabled (1) production of selenoproteome expression atlases, (2) identification of aging-associated changes in selenoprotein expression, (3) characterization of selenocysteine reactivity across the selenoprotein family, and (4) interrogation of selenoprotein targets of small-molecule drugs. Further investigations of selenoprotein function would benefit from recombinant expression of selenoproteins. However, the endogenous mechanism of selenoprotein production makes recombinant expression challenging. Primarily, selenocysteine is biosynthesized on its own tRNA, is dependent on multiple enzymatic steps, and is highly sensitive to selenium concentrations. Furthermore, selenocysteine is encoded by the stop codon UGA, and suppression of that stop codon requires a selenocysteine insertion sequence element in the selenoprotein mRNA. In order to circumvent the low efficiency of the endogenous machinery, selenoproteins have been produced in vitro through native chemical ligation and expressed protein ligation. Attempts have also been made to engineer the endogenous machinery for increased efficiency, including recoding the selenocysteine codon, and engineering the tRNA and the selenocysteine insertion sequence element. Alternatively, genetic code expansion can be used to generate selenoproteins. This approach allows for selenoprotein production directly within its native cellular environment, while bypassing the endogenous selenocysteine incorporation machinery. Furthermore, by incorporating a caged selenocysteine by genetic code expansion, selenoprotein activity can be spatially and temporally controlled. Genetic code expansion has allowed for the expression and uncaging of human selenoproteins in E. coli and more recently in mammalian cells. Together, advances in selenoprotein detection and expression should enable a better understanding of selenoprotein function and provide insight into the necessity for selenocysteine production.


Assuntos
Proteômica/métodos , Selenoproteínas/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Selenoproteínas/química , Selenoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA