Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105328, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806493

RESUMO

The receptor tyrosine kinase MET is activated by hepatocyte growth factor binding, followed by phosphorylation of the intracellular kinase domain (KD) mainly within the activation loop (A-loop) on Y1234 and Y1235. Dysregulation of MET can lead to both tumor growth and metastatic progression of cancer cells. Tepotinib is a highly selective, potent type Ib MET inhibitor and approved for treatment of non-small cell lung cancer harboring METex14 skipping alterations. Tepotinib binds to the ATP site of unphosphorylated MET with critical π-stacking contacts to Y1230 of the A-loop, resulting in a high residence time. In our study, we combined protein crystallography, biophysical methods (surface plasmon resonance, differential scanning fluorimetry), and mass spectrometry to clarify the impacts of A-loop conformation on tepotinib binding using different recombinant MET KD protein variants. We solved the first crystal structures of MET mutants Y1235D, Y1234E/1235E, and F1200I in complex with tepotinib. Our biophysical and structural data indicated a linkage between reduced residence times for tepotinib and modulation of A-loop conformation either by mutation (Y1235D), by affecting the overall Y1234/Y1235 phosphorylation status (L1195V and F1200I) or by disturbing critical π-stacking interactions with tepotinib (Y1230C). We corroborated these data with target engagement studies by fluorescence cross-correlation spectroscopy using KD constructs in cell lysates or full-length receptors from solubilized cellular membranes as WT or activated mutants (Y1235D and Y1234E/1235E). Collectively, our results provide further insight into the MET A-loop structural determinants that affect the binding of the selective inhibitor tepotinib.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-met , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Antineoplásicos/farmacologia
2.
J Med Chem ; 66(13): 8666-8686, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37403966

RESUMO

Hypoxia-inducible factors (HIFs) are heterodimeric transcription factors induced in diverse pathophysiological settings. Inhibition of HIF-2α has become a strategy for cancer treatment since the discovery that small molecules, upon binding into a small cavity of the HIF-2α PAS B domain, can alter its conformation and disturb the activity of the HIF dimer complex. Herein, the design, synthesis, and systematic SAR exploration of cycloalkyl[c]thiophenes as novel HIF-2α inhibitors are described, providing the first chemotype featuring an alkoxy-aryl scaffold. X-ray data confirmed the ability of these inhibitors to induce perturbation of key amino acids by appropriately presenting key pharmacophoric elements in the hydrophobic cavity. Selected compounds showed inhibition of VEGF-A secretion in cancer cells and prevention of Arg1 expression and activity in IL4-stimulated macrophages. Moreover, in vivo target gene modulation was demonstrated with compound 35r. Thus, the disclosed HIF-2α inhibitors represent valuable tools for investigating selective HIF-2α inhibition and its effect on tumor biology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Tiofenos , Humanos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Tiofenos/farmacologia , Fatores de Transcrição , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia
3.
ChemMedChem ; 18(8): e202200615, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36749883

RESUMO

Herein, we describe a systematic SAR- and SPR-investigation of the peptidomimetic hydroxy-proline based VHL-ligand VH032, from which most to-date published VHL-targeting PROTACs have been derived. This study provides for the first time a consistent data set which allows for direct comparison of structural variations including those which were so far hidden in patent literature. The gained knowledge about improved VHL binders was used to design a small library of highly potent BRD4-degraders comprising different VHL exit vectors. Newly designed degraders showed favorable molecular properties and significantly improved degradation potency compared to MZ1.


Assuntos
Proteínas Nucleares , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Ligantes , Proteínas Nucleares/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
4.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35858707

RESUMO

BACKGROUND: Bintrafusp alfa (BA) is a bifunctional fusion protein designed for colocalized, simultaneous inhibition of two immunosuppressive pathways, transforming growth factor-ß (TGF-ß) and programmed death-ligand 1 (PD-L1), within the tumor microenvironment (TME). We hypothesized that targeting PD-L1 to the tumor by BA colocalizes the TGF-ß trap (TGF-ßRII) to the TME, enabling it to sequester TGF-ß in the tumor more effectively than systemic TGF-ß blockade, thereby enhancing antitumor activity. METHODS: Multiple technologies were used to characterize the TGF-ß trap binding avidity. BA versus combinations of anti-PD-L1 and TGF-ß trap or the pan-TGF-ß antibody fresolimumab were compared in proliferation and two-way mixed lymphocyte reaction assays. Immunophenotyping of tumor-infiltrating lymphocytes (TILs) and RNA sequencing (RNAseq) analysis assessing stromal and immune landscape following BA or the combination therapy were performed in MC38 tumors. TGF-ß and PD-L1 co-expression and their associated gene signatures in MC38 tumors and human lung carcinoma tissue were studied with single-cell RNAseq (scRNAseq) and immunostaining. BA-induced internalization, degradation, and depletion of TGF-ß were investigated in vitro. RESULTS: BA and fresolimumab had comparable intrinsic binding to TGF-ß1, but there was an ~80× avidity-based increase in binding affinity with BA. BA inhibited cell proliferation in TGF-ß-dependent and PD-L1-expressing cells more potently than TGF-ß trap or fresolimumab. Compared with the combination of anti-PD-L1 and TGF-ß trap or fresolimumab, BA enhanced T cell activation in vitro and increased TILs in MC38 tumors, which correlated with efficacy. BA induced distinct gene expression in the TME compared with the combination therapy, including upregulation of immune-related gene signatures and reduced activities in TGF-ß-regulated pathways, such as epithelial-mesenchymal transition, extracellular matrix deposition, and fibrosis. Regulatory T cells, macrophages, immune cells of myeloid lineage, and fibroblasts were key PD-L1/TGF-ß1 co-expressing cells in the TME. scRNAseq analysis suggested BA modulation of the macrophage phenotype, which was confirmed by histological assessment. PD-L1/TGF-ß1 co-expression was also seen in human tumors. Finally, BA induced TGF-ß1 internalization and degradation in the lysosomes. CONCLUSION: BA more effectively blocks TGF-ß by targeting TGF-ß trap to the tumor via PD-L1 binding. Such colocalized targeting elicits distinct and superior antitumor responses relative to single agent combination therapy.


Assuntos
Neoplasias Pulmonares , Fator de Crescimento Transformador beta , Antígeno B7-H1 , Humanos , Fatores Imunológicos , Receptor de Morte Celular Programada 1 , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Microambiente Tumoral
5.
J Med Chem ; 64(16): 11904-11933, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382802

RESUMO

Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.


Assuntos
Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
J Med Chem ; 64(14): 10371-10392, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34255518

RESUMO

Constitutive activation of the canonical Wnt signaling pathway, in most cases driven by inactivation of the tumor suppressor APC, is a hallmark of colorectal cancer. Tankyrases are druggable key regulators in these malignancies and are considered as attractive targets for therapeutic interventions, although no inhibitor has been progressed to clinical development yet. We continued our efforts to develop tankyrase inhibitors targeting the nicotinamide pocket with suitable drug-like properties for investigating effects of Wnt pathway inhibition on tumor growth. Herein, the identification of a screening hit series and its optimization through scaffold hopping and SAR exploration is described. The systematic assessment delivered M2912, a compound with an optimal balance between excellent TNKS potency, exquisite PARP selectivity, and a predicted human PK compatible with once daily oral dosing. Modulation of cellular Wnt pathway activity and significant tumor growth inhibition was demonstrated with this compound in colorectal xenograft models in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Tanquirases/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Relação Estrutura-Atividade , Tanquirases/metabolismo
7.
J Med Chem ; 62(24): 11119-11134, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31725285

RESUMO

The recently disclosed next generation of reversible, selective, and potent MetAP-2 inhibitors introduced a cyclic tartronic diamide scaffold. However, the lead compound 1a suffered from enterohepatic circulation, preventing further development. Nevertheless, 1a served as a starting point for further optimization. Maintaining potent antiproliferation activity, while improving other compound properties, enabled the generation of an attractive array of new MetAP-2 inhibitors. The most promising derivatives were identified by a multiparameter analysis of the compound properties. Essential for the efficient selection of candidates with in vivo activity was the identification of molecules with a long residence time on the target protein, high permeability, and low efflux ratio not only in Caco-2 but also in the MDR-MDCK cell line. Orally bioavailable, potent, and reversible MetAP-2 inhibitors impede the growth of primary endothelial cells and demonstrated antitumoral activity in mouse models. This assessment led to the nomination of the clinical development compound M8891, which is currently in phase I clinical testing in oncology patients.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Indóis/farmacologia , Metionil Aminopeptidases/antagonistas & inibidores , Células A549 , Animais , Antineoplásicos/química , Apoptose , Células CACO-2 , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Inibidores Enzimáticos/química , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Indóis/química , Camundongos , Camundongos Nus , Modelos Moleculares , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Med Chem ; 62(17): 7643-7655, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31368705

RESUMO

Bruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity. Evobrutinib displayed sufficient preclinical pharmacokinetic and pharmacodynamic characteristics which allowed for in vivo evaluation in efficacy models. Moreover, the high selectivity of evobrutinib for BTK over epidermal growth factor receptor and other Tec family kinases suggested a low potential for off-target related adverse effects. Clinical investigation of evobrutinib is ongoing in several autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Descoberta de Drogas , Doenças do Sistema Imunitário/tratamento farmacológico , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Administração Oral , Tirosina Quinase da Agamaglobulinemia/metabolismo , Relação Dose-Resposta a Droga , Humanos , Doenças do Sistema Imunitário/metabolismo , Estrutura Molecular , Piperidinas/administração & dosagem , Piperidinas/química , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Pirimidinas/administração & dosagem , Pirimidinas/química , Relação Estrutura-Atividade
9.
J Biol Chem ; 294(11): 4012-4026, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635397

RESUMO

The neutral amino acid transporter solute carrier family 1 member 5 (SLC1A5 or ASCT2) is overexpressed in many cancers. To identify its roles in tumors, we employed 143B osteosarcoma cells and HCC1806 triple-negative breast cancer cells with or without ASCT2 deletion. ASCT2ko 143B cells grew well in standard culture media, but ASCT2 was required for optimal growth at <0.5 mm glutamine, with tumor spheroid growth and monolayer migration of 143B ASCT2ko cells being strongly impaired at lower glutamine concentrations. However, the ASCT2 deletion did not affect matrix-dependent invasion. ASCT2ko 143B xenografts in nude mice exhibited a slower onset of growth and a higher number of small tumors than ASCT2wt 143B xenografts, but did not differ in average tumor size 25 days after xenotransplantation. ASCT2 deficiency was compensated by increased levels of sodium neutral amino acid transporter 1 (SNAT1 or SLC38A1) and SNAT2 (SLC38A2) in ASCT2ko 143B cells, mediated by a GCN2 EIF2α kinase (GCN2)-dependent pathway, but this compensation was not observed in ASCT2ko HCC1806 cells. Combined SNAT1 silencing and GCN2 inhibition significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. Similarly, pharmacological inhibition of l-type amino acid transporter 1 (LAT1) and GCN2 significantly inhibited growth of ASCT2ko HCC1806 cells, but not of ASCT2ko 143B cells. We conclude that cancer cells with reduced transporter plasticity are more vulnerable to disruption of amino acid homeostasis than cells with a full capacity to up-regulate redundant transporters by an integrated stress response.


Assuntos
Sistema ASC de Transporte de Aminoácidos/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Antígenos de Histocompatibilidade Menor/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Sistema ASC de Transporte de Aminoácidos/deficiência , Sistema ASC de Transporte de Aminoácidos/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/metabolismo , Mutação , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Osteossarcoma/metabolismo , Células Tumorais Cultivadas
10.
PLoS One ; 8(11): e78443, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24265689

RESUMO

The molecular chaperones of the Hsp70 family have been recognized as targets for anti-cancer therapy. Since several paralogs of Hsp70 proteins exist in cytosol, endoplasmic reticulum and mitochondria, we investigated which isoform needs to be down-regulated for reducing viability of cancer cells. For two recently identified small molecule inhibitors, VER-155008 and 2-phenylethynesulfonamide (PES), which are proposed to target different sites in Hsp70s, we analyzed the molecular mode of action in vitro. We found that for significant reduction of viability of cancer cells simultaneous knockdown of heat-inducible Hsp70 (HSPA1) and constitutive Hsc70 (HSPA8) is necessary. The compound VER-155008, which binds to the nucleotide binding site of Hsp70, arrests the nucleotide binding domain (NBD) in a half-open conformation and thereby acts as ATP-competitive inhibitor that prevents allosteric control between NBD and substrate binding domain (SBD). Compound PES interacts with the SBD of Hsp70 in an unspecific, detergent-like fashion, under the conditions tested. None of the two inhibitors investigated was isoform-specific.


Assuntos
Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Nucleosídeos de Purina/farmacologia , Sulfonamidas/farmacologia , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Hidrólise/efeitos dos fármacos , Luciferases/química , Conformação Molecular , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Redobramento de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína
11.
J Mol Biol ; 425(2): 309-33, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23154170

RESUMO

Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.


Assuntos
Trifosfato de Adenosina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Fosfotirosina/química , Proteínas Tirosina Quinases/química , Proteína-Tirosina Quinase ZAP-70/química , Adenilil Imidodifosfato/metabolismo , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinética , Modelos Moleculares , Mutação/genética , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Quinase Syk , Termodinâmica , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo
12.
Bioorg Med Chem Lett ; 22(13): 4396-403, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22632933

RESUMO

Inhibitors of the Hsp90 molecular chaperone are showing considerable promise as potential molecular therapeutic agents for the treatment of cancer. Here we describe the identification of novel small molecular weight inhibitors of Hsp90 using a fragment based approach. Fragments were selected by docking, tested in a biochemical assay and the confirmed hits were crystallized. Information gained from X-ray structures of these fragments and other chemotypes was used to drive the fragment evolution process. Optimization of these high µM binders resulted in 3-benzylindazole derivatives with significantly improved affinity and anti-proliferative effects in different human cancer cell lines.


Assuntos
Amidas/química , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Indazóis/química , Bibliotecas de Moléculas Pequenas/química , Amidas/toxicidade , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Estrutura Terciária de Proteína , Bibliotecas de Moléculas Pequenas/toxicidade , Relação Estrutura-Atividade
13.
Anal Biochem ; 421(1): 138-51, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22085444

RESUMO

Targeting of the epidermal growth factor receptor (EGFR) with monoclonal antibodies has become an established antitumor strategy in clinical use or in late stages of drug development. The mAbs effector mechanisms have been widely analyzed based on in vivo or cell studies. Hereby we intend to complement these functional studies by investigating the mAb-EGFR interactions on a molecular level. Surface plasmon resonance, isothermal titration calorimetry, and static light scattering were employed to characterize the interactions of matuzumab, cetuximab, and panitumumab with the extracellular soluble form ecEGFR. The kinetic and thermodynamic determinants dissected the differences in mAbs binding mechanism toward ecEGFR. The quantitative stoichiometric data clearly demonstrated the bivalent binding of the mAbs to two ecEGFR molecules. Our results complement earlier studies on simultaneous binding of cetuximab and matuzumab. The antibodies retain their bivalent binding mode achieving a 1:2:1 complex formation. Interestingly the binding parameters remain nearly constant for the individual antibodies in this ternary assembly. In contrast the binding of panitumumab is almost exclusive either by directly blocking the accessibility for the second antibody or by negative allosteric modulation. Overall we provide a comprehensive biophysical dataset on binding parameters, the complex assembly, and relative epitope accessibility for therapeutic anti-EGFR antibodies.


Assuntos
Anticorpos Monoclonais/química , Receptores ErbB/química , Receptores ErbB/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/química , Sítios de Ligação , Fenômenos Biofísicos , Calorimetria , Cetuximab , Receptores ErbB/antagonistas & inibidores , Humanos , Fragmentos Fab das Imunoglobulinas/química , Cinética , Ligantes , Luz , Camundongos , Peso Molecular , Panitumumabe , Domínios e Motivos de Interação entre Proteínas , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
14.
J Biol Chem ; 280(46): 38767-75, 2005 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-16157581

RESUMO

Sensory rhodopsin II, the photophobic receptor from Natronomonas pharaonis (NpSRII)5, forms a 2:2 complex with its cognate transducer (N. pharaonis halobacterial transducer of rhodopsins II (NpHtrII)) in lipid membranes. Light activation of NpSRII leads to a displacement of helix F, which in turn triggers a rotation/screw-like motion of TM2 in NpHtrII. This conformational change is thought to be transmitted through the membrane adjacent conserved signal transduction domain in histidine kinases, adenylyl cyclases, methyl-accepting chemotaxis proteins, and phosphatases (HAMP domain) to the cytoplasmic signaling domain of the transducer. The architecture and function of the HAMP domain are still unknown. In order to obtain information on the structure and dynamics of this region, EPR experiments on a truncated transducer (NpHtrII(157)) and NpSRII, site-directed spin-labeled and reconstituted into purple membrane lipids, have been carried out. A nitroxide scanning involving residues in the transducer helix TM2, in the predicted AS-1 region, and at selected positions in the following connector and AS-2 regions of the HAMP domain has been performed. Accessibility and dynamics data allowed us to identify a helical region up to residue Ala(94) in the AS-1 amphipathic sequence, followed by a highly dynamic domain protruding into the water phase. Additionally, transducer-transducer and transducer-receptor proximity relations revealed the overall architecture of the AS-1 sequences in the 2:2 complex, which are suggested to form a molten globular type of a coiled-coil bundle.


Assuntos
Halorrodopsinas/química , Rodopsinas Sensoriais/química , Sequência de Aminoácidos , Archaea/metabolismo , Membrana Celular/metabolismo , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Histidina Quinase , Luz , Lipídeos/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Óxido Nítrico/química , Ligação Proteica , Conformação Proteica , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Temperatura , Termodinâmica
15.
J Mol Biol ; 330(5): 1203-13, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12860139

RESUMO

Sensory rhodopsin II, a repellent phototaxis receptor from Natronobacterium pharaonis (NpSRII) forms a tight complex with its cognate transducer (NpHtrII). Light excitation of the receptor triggers conformational changes in both proteins, thereby activating the cellular two-component signalling cascade. In membranes, the two proteins form a 2:2 complex, which dissociates to a 1:1 heterodimer in micelles. Complexed to the transducer sensory rhodopsin II is no longer capable of light-driven proton pumping. In order to elucidate the dimerisation and the size of the receptor-binding domain of the transducer, isothermal titration calorimetry and electrophysiological experiments have been carried out. It is shown, that an N-terminal sequence of 114 amino acid residues is sufficient for tight binding (K(d)=240nM; DeltaH=-17.6kJmol(-1)) and for inhibiting the proton transfer. These data and results obtained from selected site-directed mutants indicate a synergistic interplay of transducer transmembrane domain (1-82) and cytoplasmic peptide (83-114) leading to an optimal and specific interaction between receptor and transducer.


Assuntos
Proteínas Arqueais/química , Carotenoides/química , Halorrodopsinas , Rodopsinas Sensoriais , Animais , Calorimetria , Dimerização , Eletroforese em Gel de Poliacrilamida , Eletrofisiologia , Concentração de Íons de Hidrogênio , Cinética , Luz , Micelas , Modelos Moleculares , Oócitos , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Prótons , RNA Mensageiro/metabolismo , Transdução de Sinais , Temperatura , Termodinâmica , Fatores de Tempo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA