Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37827158

RESUMO

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Assuntos
Anormalidades Congênitas , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase , Humanos , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilação , Metiltransferases/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Deficiências do Desenvolvimento/genética , Anormalidades Congênitas/genética
2.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256937

RESUMO

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Assuntos
Interferon Tipo I , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Drosophila melanogaster , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
3.
Pediatr Nephrol ; 38(2): 605-609, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695966

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive ciliopathy characterized by early onset retinal dystrophy, renal anomalies, postaxial polydactyly, and cognitive impairment with considerable phenotypic heterogeneity. BBS results from biallelic pathogenic variants in over 20 genes that encode key proteins required for the assembly or primary ciliary functions of the BBSome, a heterooctameric protein complex critical for homeostasis of primary cilia. While variants in BBS1 are most frequently identified in affected individuals, the renal and pulmonary phenotypes associated with BBS1 variants are reportedly less severe than those seen in affected individuals with pathogenic variants in the other BBS-associated genes. CASE-DIAGNOSIS: We report an infant with severe renal dysplasia and lethal pulmonary hypoplasia who was homozygous for the most common BBS1 pathogenic variant (c.1169 T > G; p.M390R) and also carried a predicted pathogenic variant in TTC21B (c.1846C > T; p.R616C), a genetic modifier of disease severity of ciliopathies associated with renal dysplasia and pulmonary hypoplasia. CONCLUSIONS: This report expands the phenotypic spectrum of BBS with the first infant with lethal neonatal respiratory failure associated with biallelic, pathogenic variants in BBS1 and a monoallelic, predicted pathogenic variant in TTC21B. BBS should be considered among the ciliopathies in the differential diagnosis of neonates with renal dysplasia and severe respiratory failure.


Assuntos
Síndrome de Bardet-Biedl , Insuficiência Respiratória , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fenótipo
4.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570182

RESUMO

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Assuntos
Doença Aguda , Doenças Genéticas Inatas , Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde
5.
Am J Respir Cell Mol Biol ; 63(4): 436-443, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692933

RESUMO

Rare or private, biallelic variants in the ABCA3 (ATP-binding cassette transporter A3) gene are the most common monogenic cause of lethal neonatal respiratory failure and childhood interstitial lung disease. Functional characterization of fewer than 10% of over 200 disease-associated ABCA3 variants (majority missense) suggests either disruption of ABCA3 protein trafficking (type I) or of ATPase-mediated phospholipid transport (type II). Therapies remain limited and nonspecific. A scalable platform is required for functional characterization of ABCA3 variants and discovery of pharmacologic correctors. To address this need, we first silenced the endogenous ABCA3 locus in A549 cells with CRISPR/Cas9 genome editing. Next, to generate a parent cell line (A549/ABCA3-/-) with a single recombination target site for genomic integration and stable expression of individual ABCA3 missense variant cDNAs, we used lentiviral-mediated integration of a LoxFAS cassette, FACS, and dilutional cloning. To assess the fidelity of this cell-based model, we compared functional characterization (ABCA3 protein processing, ABCA3 immunofluorescence colocalization with intracellular markers, ultrastructural vesicle phenotype) of two individual ABCA3 mutants (type I mutant, p.L101P; type II mutant, p.E292V) in A549/ABCA3-/- cells and in both A549 cells and primary, human alveolar type II cells that transiently express each cDNA after adenoviral-mediated transduction. We also confirmed pharmacologic rescue of ABCA3 variant-encoded mistrafficking and vesicle diameter in A549/ABCA3-/- cells that express p.G1421R (type I mutant). A549/ABCA3-/- cells provide a scalable, genetically versatile, physiologically relevant functional genomics platform for discovery of variant-specific mechanisms that disrupt ABCA3 function and for screening of potential ABCA3 pharmacologic correctors.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genoma/genética , Mutação de Sentido Incorreto/genética , Células A549 , Adenosina Trifosfatases/genética , Células Epiteliais Alveolares/metabolismo , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Imunofluorescência/métodos , Edição de Genes/métodos , Genômica/métodos , Humanos , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/genética
6.
Am J Med Genet A ; 182(5): 1053-1065, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083401

RESUMO

Pathogenic variants in KMT2D, which encodes lysine specific methyltransferase 2D, cause autosomal dominant Kabuki syndrome, associated with distinctive dysmorphic features including arched eyebrows, long palpebral fissures with eversion of the lower lid, large protuberant ears, and fetal finger pads. Most disease-causing variants identified to date are putative loss-of-function alleles, although 15-20% of cases are attributed to missense variants. We describe here four patients (including one previously published patient) with de novo KMT2D missense variants and with shared but unusual clinical findings not typically seen in Kabuki syndrome, including athelia (absent nipples), choanal atresia, hypoparathyroidism, delayed or absent pubertal development, and extreme short stature. These individuals also lack the typical dysmorphic facial features found in Kabuki syndrome. Two of the four patients had severe interstitial lung disease. All of these variants cluster within a 40-amino-acid region of the protein that is located just N-terminal of an annotated coiled coil domain. These findings significantly expand the phenotypic spectrum of features associated with variants in KMT2D beyond those seen in Kabuki syndrome and suggest a possible new underlying disease mechanism for these patients.


Assuntos
Anormalidades Múltiplas/genética , Mama/anormalidades , Anormalidades Congênitas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Predisposição Genética para Doença , Doenças Hematológicas/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Mama/diagnóstico por imagem , Mama/fisiopatologia , Doenças Mamárias , Criança , Anormalidades Congênitas/diagnóstico por imagem , Anormalidades Congênitas/fisiopatologia , Face/diagnóstico por imagem , Face/patologia , Feminino , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Humanos , Mutação com Perda de Função/genética , Masculino , Mutação/genética , Fenótipo , Doenças Vestibulares/diagnóstico por imagem , Doenças Vestibulares/patologia , Sequenciamento do Exoma , Adulto Jovem
7.
J Pediatr ; 194: 158-164.e1, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29198536

RESUMO

OBJECTIVE: To describe disease course, histopathology, and outcomes for infants with atypical presentations of alveolar capillary dysplasia with misalignment of the pulmonary veins (ACDMPV) who underwent bilateral lung transplantation. STUDY DESIGN: We reviewed clinical history, diagnostic studies, explant histology, genetic sequence results, and post-transplant course for 6 infants with atypical ACDMPV who underwent bilateral lung transplantation at St. Louis Children's Hospital. We compared their histology with infants with classic ACDMPV and compared their outcomes with infants transplanted for other indications. RESULTS: In contrast with neonates with classic ACDPMV who present with severe hypoxemia and refractory pulmonary hypertension within hours of birth, none of the infants with atypical ACDMPV presented with progressive neonatal respiratory failure. Three infants had mild neonatal respiratory distress and received nasal cannula oxygen. Three other infants had no respiratory symptoms at birth and presented with hypoxemia and pulmonary hypertension at 2-3 months of age. Bilateral lung transplantation was performed at 4-20 months of age. Unlike in classic ACDMPV, histopathologic findings were not distributed uniformly and were not diffuse. Three subjects had apparent nonmosaic genetic defects involving FOXF1. Two infants had extrapulmonary anomalies (posterior urethral valves, inguinal hernia). Three transplanted children are alive at 5-16 years of age, similar to outcomes for infants transplanted for other indications. Lung explants from infants with atypical ACDMPV demonstrated diagnostic but nonuniform histopathologic findings. CONCLUSIONS: The 1- and 5-year survival rates for infants with atypical ACDMPV are similar to infants transplanted for other indications. Given the clinical and histopathologic spectra, ACDMPV should be considered in infants with hypoxemia and pulmonary hypertension, even beyond the newborn period.


Assuntos
Transplante de Pulmão/métodos , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Alvéolos Pulmonares/anormalidades , Feminino , Fatores de Transcrição Forkhead/genética , Humanos , Lactente , Recém-Nascido , Pulmão/patologia , Masculino , Mutação , Síndrome da Persistência do Padrão de Circulação Fetal/complicações , Síndrome da Persistência do Padrão de Circulação Fetal/cirurgia , Alvéolos Pulmonares/cirurgia , Veias Pulmonares/anormalidades , Taxa de Sobrevida
8.
Hum Mutat ; 38(11): 1477-1484, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28726266

RESUMO

Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.


Assuntos
Artrogripose/diagnóstico , Artrogripose/genética , Genes Letais , Proteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , Artrogripose/mortalidade , Biópsia , Análise Mutacional de DNA , Evolução Fatal , Estudos de Associação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Raízes Nervosas Espinhais/ultraestrutura , Sequenciamento do Exoma
9.
Am J Respir Cell Mol Biol ; 55(5): 716-721, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27374344

RESUMO

Mutations in the ATP-binding cassette transporter A3 gene (ABCA3) result in severe neonatal respiratory distress syndrome and childhood interstitial lung disease. As most ABCA3 mutations are rare or private, determination of mutation pathogenicity is often based on results from in silico prediction tools, identification in unrelated diseased individuals, statistical association studies, or expert opinion. Functional biologic studies of ABCA3 mutations are needed to confirm mutation pathogenicity and inform clinical decision making. Our objective was to functionally characterize two ABCA3 mutations (p.R288K and p.R1474W) identified among term and late-preterm infants with respiratory distress syndrome with unclear pathogenicity in a genetically versatile model system. We performed transient transfection of HEK293T cells with wild-type or mutant ABCA3 alleles to assess protein processing with immunoblotting. We used transduction of A549 cells with adenoviral vectors, which concurrently silenced endogenous ABCA3 and expressed either wild-type or mutant ABCA3 alleles (p.R288K and p.R1474W) to assess immunofluorescent localization, ATPase activity, and organelle ultrastructure. Both ABCA3 mutations (p.R288K and p.R1474W) encoded proteins with reduced ATPase activity but with normal intracellular localization and protein processing. Ultrastructural phenotypes of lamellar body-like vesicles in A549 cells transduced with mutant alleles were similar to wild type. Mutant proteins encoded by ABCA3 mutations p.R288K and p.R1474W had reduced ATPase activity, a biologically plausible explanation for disruption of surfactant metabolism by impaired phospholipid transport into the lamellar body. These results also demonstrate the usefulness of a genetically versatile, human model system for functional characterization of ABCA3 mutations with unclear pathogenicity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Células A549 , Adenosina Trifosfatases/metabolismo , Adenoviridae/metabolismo , Imunofluorescência , Células HEK293 , Humanos , Immunoblotting , Lactente , Proteínas Mutantes/metabolismo , Organelas/metabolismo , Organelas/ultraestrutura , Frações Subcelulares/metabolismo
10.
J Pediatr ; 164(6): 1316-21.e3, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24657120

RESUMO

OBJECTIVE: To determine whether synonymous variants in the adenosine triphosphate-binding cassette A3 transporter (ABCA3) gene increase the risk for neonatal respiratory distress syndrome (RDS) in term and late preterm infants of European and African descent. STUDY DESIGN: Using next-generation pooled sequencing of race-stratified DNA samples from infants of European and African descent at ≥34 weeks gestation with and without RDS (n = 503), we scanned all exons of ABCA3, validated each synonymous variant with an independent genotyping platform, and evaluated race-stratified disease risk associated with common synonymous variants and collapsed frequencies of rare synonymous variants. RESULTS: The synonymous ABCA3 variant frequency spectrum differs between infants of European descent and those of African descent. Using in silico prediction programs and statistical strategies, we found no potentially disruptive synonymous ABCA3 variants or evidence of selection pressure. Individual common synonymous variants and collapsed frequencies of rare synonymous variants did not increase disease risk in term and late-preterm infants of European or African descent. CONCLUSION: In contrast to rare, nonsynonymous ABCA3 mutations, synonymous ABCA3 variants do not increase the risk for neonatal RDS among term and late-preterm infants of European or African descent.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Predisposição Genética para Doença/epidemiologia , Variação Genética , Recém-Nascido Prematuro , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , População Negra/genética , Estudos de Coortes , Feminino , Humanos , Incidência , Recém-Nascido , Masculino , Mutação , Estudos Prospectivos , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Síndrome do Desconforto Respiratório do Recém-Nascido/etnologia , Medição de Risco , Sensibilidade e Especificidade , População Branca/genética
11.
BMC Med Genet ; 14: 106, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24103465

RESUMO

BACKGROUND: Methionyl-tRNA synthetase (MARS) catalyzes the ligation of methionine to its cognate transfer RNA and therefore plays an essential role in protein biosynthesis. METHODS: We used exome sequencing, aminoacylation assays, homology modeling, and immuno-isolation of transfected MARS to identify and characterize mutations in the methionyl-tRNA synthetase gene (MARS) in an infant with an unexplained multi-organ phenotype. RESULTS: We identified compound heterozygous mutations (F370L and I523T) in highly conserved regions of MARS. The parents were each heterozygous for one of the mutations. Aminoacylation assays documented that the F370L and I523T MARS mutants had 18 ± 6% and 16 ± 6%, respectively, of wild-type activity. Homology modeling of the human MARS sequence with the structure of E. coli MARS showed that the F370L and I523T mutations are in close proximity to each other, with residue I523 located in the methionine binding pocket. We found that the F370L and I523T mutations did not affect the association of MARS with the multisynthetase complex. CONCLUSION: This infant expands the catalogue of inherited human diseases caused by mutations in aminoacyl-tRNA synthetase genes.


Assuntos
Metionina tRNA Ligase/genética , Adulto , Sequência de Aminoácidos , Medula Óssea/patologia , Encéfalo/diagnóstico por imagem , Éxons , Feminino , Heterozigoto , Humanos , Lactente , Hepatopatias/genética , Hepatopatias/patologia , Imageamento por Ressonância Magnética , Metionina/metabolismo , Metionina tRNA Ligase/química , Dados de Sequência Molecular , Mutação , Fenótipo , Estrutura Terciária de Proteína , Radiografia , Análise de Sequência de DNA
12.
Pediatrics ; 130(6): e1575-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23166334

RESUMO

BACKGROUND AND OBJECTIVE: Neonatal respiratory distress syndrome (RDS) due to pulmonary surfactant deficiency is heritable, but common variants do not fully explain disease heritability. METHODS: Using next-generation, pooled sequencing of race-stratified DNA samples from infants ≥34 weeks' gestation with and without RDS (n = 513) and from a Missouri population-based cohort (n = 1066), we scanned all exons of 5 surfactant-associated genes and used in silico algorithms to identify functional mutations. We validated each mutation with an independent genotyping platform and compared race-stratified, collapsed frequencies of rare mutations by gene to investigate disease associations and estimate attributable risk. RESULTS: Single ABCA3 mutations were overrepresented among European-descent RDS infants (14.3% of RDS vs 3.7% of non-RDS; P = .002) but were not statistically overrepresented among African-descent RDS infants (4.5% of RDS vs 1.5% of non-RDS; P = .23). In the Missouri population-based cohort, 3.6% of European-descent and 1.5% of African-descent infants carried a single ABCA3 mutation. We found no mutations among the RDS infants and no evidence of contribution to population-based disease burden for SFTPC, CHPT1, LPCAT1, or PCYT1B. CONCLUSIONS: In contrast to lethal neonatal RDS resulting from homozygous or compound heterozygous ABCA3 mutations, single ABCA3 mutations are overrepresented among European-descent infants ≥34 weeks' gestation with RDS and account for ~10.9% of the attributable risk among term and late preterm infants. Although ABCA3 mutations are individually rare, they are collectively common among European- and African-descent individuals in the general population.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Predisposição Genética para Doença/genética , Mutação , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Negro ou Afro-Americano/genética , Colina-Fosfato Citidililtransferase/genética , Estudos de Coortes , Diacilglicerol Colinofosfotransferase/genética , Exoma/genética , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Predisposição Genética para Doença/etnologia , Idade Gestacional , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Proteína C Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/etnologia , Risco , População Branca/genética
13.
Zhonghua Er Ke Za Zhi ; 50(11): 843-6, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23302616

RESUMO

OBJECTIVE: To explore the prevalence of pulmonary surfactant associated pathway genes functional variants in Chinese population. METHOD: Using a cohort of 258 mixed ethnic population of Han and Zhuang, we pooled DNA samples from 146 term male infants and 112 term female infants and then used an Ill umina next generation sequencing platform to perform the complete exonic resequencing in 6 target genes:surfactant protein-B (SFTPB), surfactant protein-C (SFTPC), ATP-binding cassette transporter A3 (ABCA3), lysophospholipid acyltransferase 1 (LPCAT1), choline phosphotransferase 1 (CHPT1), phosphate cytidylyltransferase 1, choline, beta (PCYT1B). Collapsing methods was used to determine the functional allele frequency. RESULT: (1) Altogether, 128 variants were found, including 44 synonymous variants, 66 nonsynonymous variants and 18 insertions-deletions. Of these, 28 variants were predicted to alter protein function. Two of these variants were seen twice, the rest variants were only seen once, for a total of 30 functional alleles; (2) ABCA3 had the most functional variants in both male and female groups with the minor allele frequencies of 0.014 (1.4%) and 0.04 (4%), respectively. The total functional allele frequencies of 6 genes were 0.041 (4.1%) and 0.08 (8%) in the two groups, respectively (P = 0.06). CONCLUSION: (1) Functional variants in pulmonary surfactant associated pathway genes are present in the mixed Han-Zhuang population. (2) ABCA3 contained the most functional variants suggesting that ABCA3 could contribute significantly to neonatal respiratory distress syndrome and other lung disease.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , Transportadores de Cassetes de Ligação de ATP/genética , Variação Genética , Proteínas Associadas a Surfactantes Pulmonares/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Povo Asiático/etnologia , Povo Asiático/genética , China/etnologia , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Recém-Nascido , Masculino , Proteína C Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/etnologia
14.
Pediatr Res ; 68(3): 216-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20539253

RESUMO

Dominant mutations in coding regions of the surfactant protein-C gene, SFTPC, cause respiratory distress syndrome (RDS) in infants. However, the contribution of variants in noncoding regions of SFTPC to pulmonary phenotypes is unknown. By using a case-control group of infants > or =34 weeks gestation (n = 538), we used complete resequencing of SFTPC and its promoter, genotyping, and logistic regression to identify 80 single nucleotide polymorphisms (SNPs). Three promoter SNPs were statistically associated with neonatal RDS among European descent infants. To assess the transcriptional effects of these three promoter SNPs, we selectively mutated the SFTPC promoter and performed transient transfection using MLE-15 cells and a firefly luciferase reporter vector. Each promoter SNP decreased SFTPC transcription. The combination of two variants in high linkage dysequilibrium also decreased SFTPC transcription. In silico evaluation of transcription factor binding demonstrated that the rare allele at g.-1167 disrupts a SOX (SRY-related high mobility group box) consensus motif and introduces a GATA-1 site, at g.-2385 removes a MZF-1 (myeloid zinc finger) binding site, and at g.-1647 removes a potential methylation site. This combined statistical, in vitro, and in silico approach suggests that reduced SFTPC transcription contributes to the genetic risk for neonatal RDS in developmentally susceptible infants.


Assuntos
Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Proteína C Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Transcrição Gênica/genética , Animais , Sequência de Bases , Estudos de Casos e Controles , Linhagem Celular Tumoral , Genótipo , Humanos , Recém-Nascido , Desequilíbrio de Ligação , Modelos Logísticos , Luciferases , Camundongos , Dados de Sequência Molecular , Proteína C Associada a Surfactante Pulmonar/metabolismo , Análise de Sequência de DNA , Regiões não Traduzidas/genética , População Branca/genética
15.
Pediatr Pulmonol ; 43(5): 443-50, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18383112

RESUMO

OBJECTIVE: To determine haplotype background of common mutations in the genes encoding surfactant proteins B and C (SFTPB and SFTPC) and to assess recombination in SFTPC. STUDY DESIGN: Using comprehensive resequencing of SFTPC and SFTPB, we assessed linkage disequilibrium (LD) (D'), and computationally inferred haplotypes. We computed average recombination rates and Bayes factors (BFs) within SFTPC in a population cohort and near SFTPC (+/-50 kb) in HapMap cohorts. We then biochemically confirmed haplotypes in families with sporadic SFTPC mutations (n = 11) and in individuals with the common SFTPB mutation (121ins2, n = 30). RESULTS: We detected strong evidence (weak LD and BFs > 1,400) for an intragenic recombination hot spot in both genes. The 121ins2 SFTPB mutation occurred predominantly (89%) on 2 common haplotypes. In contrast, no consistent haplotypes were associated with mutated SFTPC alleles. Sporadic SFTPC mutations arose on the paternal allele in four of five families; the remaining child had evidence for somatic recombination on the mutated allele. CONCLUSIONS: In contrast to SFTPB, disease alleles at SFTPC do not share a common haplotype background. Most sporadic mutations in SFTPC occurred on the paternal allele, but somatic recombination may be an important mechanism of mutation in SFTPC.


Assuntos
Doenças Pulmonares Intersticiais/genética , Mutação/genética , Proteína C Associada a Surfactante Pulmonar/genética , Recombinação Genética/genética , Negro ou Afro-Americano/genética , Alelos , Teorema de Bayes , Estudos de Coortes , Frequência do Gene/genética , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Haplótipos/genética , Humanos , Lactente , Dados de Sequência Molecular , Mutagênese Insercional/genética , Proteína B Associada a Surfactante Pulmonar/genética , Fatores Sexuais , População Branca/genética
16.
Pediatr Res ; 63(6): 645-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18317237

RESUMO

The prevalence of the common mutations in the surfactant protein-B (121ins2), surfactant protein-C (I73T), and ATP-binding cassette member A3 (E292V) genes in population-based or case-control cohorts of newborn respiratory distress syndrome (RDS) is unknown. We determined the frequencies of these mutations in ethnically diverse population and disease-based cohorts using restriction enzyme analysis (121ins2 and E292V) and a 5' nuclease assay (I73T) in DNA samples from population-based cohorts in Missouri, Norway, South Korea, and South Africa, and from a case-control cohort of newborns with and without RDS (n = 420). We resequenced the ATP-binding cassette member A3 gene (ABCA3) in E292V carriers and computationally inferred ABCA3 haplotypes. The population-based frequencies of 121ins2, E292V, and I73T were rare (<0.4%). E292V was present in 3.8% of newborns with RDS, a 10-fold greater prevalence than in the Missouri cohort (p < 0.001). We did not identify other loss of function mutations in ABCA3 among patients with E292V that would account for their RDS. E292V occurred on a unique haplotype that was derived from a recombination of two common ABCA3 haplotypes. E292V was over-represented in newborns with RDS suggesting that E292V or its unique haplotype impart increased genetic risk for RDS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Mutação , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Haplótipos , Humanos , Lactente , Recém-Nascido , Coreia (Geográfico) , Masculino , Missouri , Noruega , Vigilância da População , Proteína B Associada a Surfactante Pulmonar/deficiência , Proteína C Associada a Surfactante Pulmonar/deficiência , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Fatores de Risco , África do Sul
17.
Acta Paediatr ; 96(4): 516-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17391469

RESUMO

BACKGROUND: Loss of function mutations in the surfactant protein-B gene (SFTPB) cause lethal neonatal respiratory distress due to reduced or absent expression of mature surfactant protein B (SP-B, encoded in exons 6 and 7). No large deletions in SFTPB have been previously identified. AIM: Genomic, proteomic and immunohistochemical characterization of a 3 kb deletion in SFTPB. METHODS: A full-term newborn presented with refractory respiratory failure. We amplified and sequenced SFTPB from the infant and both parents, determined SP-B protein expression in tracheal aspirate samples using Western-blot analysis, and performed immunohistochemical staining and electron microscopy of lung biopsy tissue. RESULTS: The infant was homozygous for a 2958 bp deletion in SFTPB that included exons 7 and 8. Both asymptomatic parents were heterozygous for the deletion. A truncated mature SP-B peptide was detected on Western blotting of tracheal aspirate. Amino acid sequence specific to that encoded in exon 5 was present, but that encoded by exon 7 was absent. ProSP-B expression was robust within alveolar type II cells and lamellar body structure was disrupted. CONCLUSIONS: This deletion in SFTPB resulted in SP-B deficiency due to absence of elements in mature SP-B that are critical for appropriate peptide folding, trafficking and processing.


Assuntos
Deleção de Genes , Proteína B Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Pareamento de Bases/genética , Evolução Fatal , Feminino , Humanos , Recém-Nascido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA