Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370823

RESUMO

Background: Bloom Syndrome (BSyn) is an autosomal recessive disorder caused by biallelic germline variants in BLM, which functions to maintain genomic stability. BSyn patients have poor growth, immune defects, insulin resistance, and a significantly increased risk of malignancies, most commonly hematologic. The malignancy risk in carriers of pathogenic variants in BLM (BLM variant carriers) remains understudied. Clonal hematopoiesis of indeterminate potential (CHIP) is defined by presence of somatic mutations in leukemia-related genes in blood of individuals without leukemia and is associated with increased risk of leukemia. We hypothesize that somatic mutations driving clonal expansion may be an underlying mechanism leading to increased cancer risk in BSyn patients and BLM variant carriers. Methods: To determine whether de novo or somatic variation is increased in BSyn patients or carriers, we performed and analyzed exome sequencing on BSyn and control trios. Results: We discovered that both BSyn patients and carriers had increased numbers of low-frequency, putative somatic variants in CHIP genes compared to controls. Furthermore, BLM variant carriers had increased numbers of somatic variants in DNA methylation genes compared to controls. There was no statistical difference in the numbers of de novo variants in BSyn probands compared to control probands. Conclusion: Our findings of increased CHIP in BSyn probands and carriers suggest that one or two germline pathogenic variants in BLM could be sufficient to increase the risk of clonal hematopoiesis. These findings warrant further studies in larger cohorts to determine the significance of CHIP as a potential biomarker of aging, cancer, cardiovascular disease, morbidity and mortality.

4.
J Am Acad Dermatol ; 89(3): 529-536, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37224968

RESUMO

BACKGROUND: Asian American and Pacific Islander (AAPI) melanoma patients have higher mortality than non-Hispanic White (NHW) patients. Treatment delays may contribute, but whether AAPI patients have longer time from diagnosis to definitive surgery (TTDS) is unknown. OBJECTIVES: Investigate TTDS differences between AAPI and NHW melanoma patients. METHODS: Retrospective review of AAPI and NHW melanoma patients in the National Cancer Database (NCD) (2004-2020). The association of race with TTDS was evaluated by multivariable logistic regression, controlling for sociodemographic characteristics. RESULTS: Of 354,943 AAPI and NHW melanoma patients identified, 1155 (0.33%) were AAPI. AAPI patients had longer TTDS for stage I, II, and III melanoma (P < .05 for all). Adjusting for sociodemographic factors, AAPI patients had 1.5 times the odds of a TTDS between 61 and 90 days and twice the odds of a TTDS >90 days. Racial differences in TTDS persisted in Medicare and private insurance types. Uninsured AAPI patients had the longest TTDS (mean, 53.26 days), while those with private insurance had the shortest TTDS (mean, 34.92 days; P < .001 for both). LIMITATION: AAPI patients comprised 0.33% of the sample. CONCLUSIONS: AAPI melanoma patients have increased odds of treatment delays. Associated socioeconomic differences should inform efforts to reduce disparities in treatment and survival.


Assuntos
Asiático , Acessibilidade aos Serviços de Saúde , Melanoma , População das Ilhas do Pacífico , Neoplasias Cutâneas , Tempo para o Tratamento , Idoso , Humanos , Asiático/estatística & dados numéricos , Estudos Transversais , Medicare/estatística & dados numéricos , Melanoma/epidemiologia , Melanoma/etnologia , Melanoma/terapia , Estados Unidos/epidemiologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etnologia , Neoplasias Cutâneas/terapia , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos
6.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37053013

RESUMO

ASXL1 (additional sex combs-like 1) plays key roles in epigenetic regulation of early developmental gene expression. De novo protein-truncating mutations in ASXL1 cause Bohring-Opitz syndrome (BOS; OMIM #605039), a rare neurodevelopmental condition characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, increased risk of Wilms tumor, and variable congenital anomalies, including heart defects and severe skeletal defects giving rise to a typical BOS posture. These BOS-causing ASXL1 variants are also high-prevalence somatic driver mutations in acute myeloid leukemia. We used primary cells from individuals with BOS (n = 18) and controls (n = 49) to dissect gene regulatory changes caused by ASXL1 mutations using comprehensive multiomics assays for chromatin accessibility (ATAC-seq), DNA methylation, histone methylation binding, and transcriptome in peripheral blood and skin fibroblasts. Our data show that regardless of cell type, ASXL1 mutations drive strong cross-tissue effects that disrupt multiple layers of the epigenome. The data showed a broad activation of canonical Wnt signaling at the transcriptional and protein levels and upregulation of VANGL2, which encodes a planar cell polarity pathway protein that acts through noncanonical Wnt signaling to direct tissue patterning and cell migration. This multiomics approach identifies the core impact of ASXL1 mutations and therapeutic targets for BOS and myeloid leukemias.


Assuntos
Deficiência Intelectual , Neoplasias Renais , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Epigênese Genética , Multiômica , Via de Sinalização Wnt/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Neoplasias Renais/genética
7.
Neurobiol Dis ; 125: 67-76, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30682540

RESUMO

TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.


Assuntos
Encéfalo/patologia , Proteinopatias TDP-43/genética , Tiroxina , Tri-Iodotironina , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Encéfalo/metabolismo , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Transportadores de Ânions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Receptores de Sulfonilureias/genética , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Tiroxina/análise , Tiroxina/genética , Tiroxina/metabolismo , Tri-Iodotironina/análise , Tri-Iodotironina/genética , Tri-Iodotironina/metabolismo
8.
Neuroepigenetics ; 6: 10-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27429906

RESUMO

Neural stem progenitor cells (NSPCs) in the human subventricular zone (SVZ) potentially contribute to life-long neurogenesis, yet subtypes of glioblastoma multiforme (GBM) contain NSPC signatures that highlight the importance of cell fate regulation. Among numerous regulatory mechanisms, the post-translational methylations onto histone tails are crucial regulator of cell fate. The work presented here focuses on the role of two repressive chromatin marks tri-methylations on histone H3 lysine 27 (H3K27me3) and histone H4 lysine 20 (H4K20me3) in the adult NSPC within the SVZ. To best model healthy human NSPCs as they exist in vivo for epigenetic profiling of H3K27me3 and H4K20me3, we utilized NSPCs isolated from the adult SVZ of baboon brain (Papio anubis) with brain structure and genomic level similar to human. The putative role of H3K27me3 in normal NSPCs predominantly falls into the regulation of gene expression, cell cycle, and differentiation, whereas H4K20me3 is involved in DNA replication/repair, metabolism, and cell cycle. Using conditional knock-out mouse models to diminish Ezh2 and Suv4-20h responsible for H3K27me3 and H4K20me3, respectively, we found that both repressive marks have irrefutable function for cell cycle regulation in the NSPC population. While both EZH2/H3K27me3 and Suv4-20h/H4K20me3 have implication in cancers, our comparative genomics approach between healthy NSPCs and human GBM specimens revealed that substantial sets of genes enriched with H3K27me3 and H4K20me3 in the NSPCs are altered in the human GBM. In sum, our integrated analyses across species highlight important roles of H3K27me3 and H4K20me3 in normal and disease conditions in the context of NSPC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA