Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Explor Target Antitumor Ther ; 5(3): 641-677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966172

RESUMO

Bladder cancer (BC) is the tenth most common malignancy globally. Urothelial carcinoma (UC) is a major type of BC, and advanced UC (aUC) is associated with poor clinical outcomes and limited survival rates. Current options for aUC treatment mainly include chemotherapy and immunotherapy. These options have moderate efficacy and modest impact on overall survival and thus highlight the need for novel therapeutic approaches. aUC patients harbor a high tumor mutation burden and abundant molecular alterations, which are the basis for targeted therapies. Erdafitinib is currently the only Food and Drug Administration (FDA)-approved targeted therapy for aUC. Many potential targeted therapeutics aiming at other molecular alterations are under investigation. This review summarizes the current understanding of molecular alterations associated with aUC targeted therapy. It also comprehensively discusses the related interventions for treatment in clinical research and the potential of using novel targeted drugs in combination therapy.

2.
Acupunct Med ; 42(3): 146-154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702866

RESUMO

BACKGROUND: Cervical spondylosis (CS) is a prevalent disorder that can have a major negative impact on quality of life. Traditional conservative treatment has limited efficacy, and electroacupuncture (EA) is a novel treatment option. We investigated the application and molecular mechanism of EA treatment in a rat model of cervical intervertebral disk degeneration (CIDD). METHODS: The CIDD rat model was established, following which rats in the electroacupuncture (EA) group received EA. For overexpression of IL-22 or inhibition of JAK2-STAT3 signaling, the rats were injected intraperitoneally with recombinant IL-22 protein (p-IL-22) or the JAK2-STAT3 (Janus kinase 2-signal transducer and activator of transcription protein 3) inhibitor AG490 after model establishment. Rat nucleus pulposus (NP) cells were isolated and cultured. Cell counting kit-8 and flow cytometry were used to analyze the viability and apoptosis of the NP cells. Expression of IL-22, JAK2 and STAT3 was determined using RT-qPCR. Expression of IL-22/JAK2-STAT3 pathway and apoptosis related proteins was detected by Western blotting (WB). RESULTS: EA protected the NP tissues of CIDD rats by regulating the IL-22/JAK2-STAT3 pathway. Overexpression of IL-22 significantly promoted the expression of tumor necrosis factor (TNF)-α, IL-6, IL-1ß, matrix metalloproteinase (MMP)3 and MMP13 compared with the EA group. WB demonstrated that the expression of IL-22, p-JAK2, p-STAT3, caspase-3 and Bax in NP cells of the EA group was significantly reduced and Bcl-2 elevated compared with the model group. EA regulated cytokines and MMP through activation of IL-22/JAK2-STAT3 signaling in CIDD rat NP cells. CONCLUSION: We demonstrated that EA affected apoptosis by regulating the IL-22/JAK2-STAT3 pathway in NP cells and reducing inflammatory factors in the CIDD rat model. The results extend our knowledge of the mechanisms of action underlying the effects of EA as a potential treatment approach for CS in clinical practice.


Assuntos
Apoptose , Modelos Animais de Doenças , Eletroacupuntura , Interleucina 22 , Interleucinas , Degeneração do Disco Intervertebral , Janus Quinase 2 , Núcleo Pulposo , Ratos Sprague-Dawley , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Degeneração do Disco Intervertebral/terapia , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Núcleo Pulposo/citologia , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Ratos , Interleucinas/metabolismo , Interleucinas/genética , Masculino , Humanos , Vértebras Cervicais
3.
Front Pediatr ; 12: 1349175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646509

RESUMO

Objectives: To evaluate serial tissue Doppler cardiac imaging (TDI) in the evolution of bronchopulmonary dysplasia-associated pulmonary hypertension (BPD-PH) among extremely preterm infants. Design: Prospective observational study. Setting: Single-center, tertiary-level neonatal intensive care unit. Patients: Infant born <28 weeks gestation. Main outcome measures: Utility of TDI in the early diagnosis and prediction of BPD-PH and optimal timing for screening of BPD-PH. Results: A total of 79 infants were included. Of them, 17 (23%) had BPD-PH. The mean gestational age was 25.9 ± 1.1 weeks, and mean birth weight was 830 ± 174 g. The BPD-PH group had a high incidence of hemodynamically significant patent ductus arteriosus (83% vs. 56%, p < 0.018), longer oxygen days (96.16 ± 68.09 vs. 59.35 ± 52.1, p < 0.008), and prolonged hospital stay (133.8 ± 45.9 vs. 106.5 ± 37.9 days, p < 0.005). The left ventricular eccentricity index (0.99 ± 0.1 vs. 1.1 ± 0.7, p < 0.01) and the ratio of acceleration time to right ventricular ejection time showed a statistically significant trend from 33 weeks (0.24 ± 0.05 vs. 0.28 ± 0.05, p < 0.05). At 33 weeks, the BPD-PH group showed prolonged isovolumetric contraction time (27.84 ± 5.5 vs. 22.77 ± 4, p < 0.001), prolonged isovolumetric relaxation time (40.3 ± 7.1 vs. 34.9 ± 5.3, p < 0.003), and abnormal myocardial performance index (0.39 ± 0.05 vs. 0.32 ± 0.03, p < 0.001). These differences persisted at 36 weeks after conceptional gestational age. Conclusions: TDI parameters are sensitive in the early evolution of BPD-PH. Diagnostic accuracy can be increased by combining the TDI parameters with conventional echocardiographic parameters. BPD-PH can be recognizable as early as 33-34 weeks of gestation.

4.
Anal Chim Acta ; 1299: 342422, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499425

RESUMO

BACKGROUND: Ferroptosis, as a novel form of cell death, is becoming one of the hot topics in cancer treatment research. It differs from necrosis and autophagy in that it involves the accumulation of lipid peroxides and is triggered by iron dependency. Recent studies have suggested that this mechanism may alter the viscosity or structure of lipid droplets (LDs). The relationship between LDs viscosity and ferroptosis remains an active area of research with limited reports at present. Additionally, there is a lack of effective anticancer drugs targeting the ferroptosis pathway to promote ferroptosis in tumour cells. Therefore, the development of tools to detect viscosity changes during ferroptosis and targeted therapeutic strategies is of great significance. RESULTS: By coupling 1,3-indandione with naphthalimide, including decamethylamine as a LDs recognition group, we designed and synthesized an environmental fluorescent probe that induces intramolecular charge transfer (TICT) effects. Notably, the diffusion and transport of intracellular substances may be affected in highly viscous environments. Under such conditions, intracellular iron ions may accumulate, leading to peroxide production and cellular damage, which can trigger ferroptosis. Therefore, WD-1 achieved excellent in situ bioimaging of LDs targeting and its viscosity during ferroptosis in HeLa cells and zebrafish. Furthermore, it was observed that WD-1 effectively differentiated between malignant and normal cells during this process, highlighting its potential significance in distinguishing cellular states. In addition, we used the antitumour drug paclitaxel to study ferroptosis in cancer cells. These findings not only provide an excellent tool for the development of the ferroptosis response, but also are crucial for understanding the biological properties of LDs during the ferroptosis response. SIGNIFICANCE AND NOVELTY: Based on a powerful tool of fluorescent probe with in vivo bioimaging, we developed WD-1 to track the impact of paclitaxel on the process of ferroptosis in living cells. Therefore, we preliminarily believe that paclitaxel may affect the occurrence of ferroptosis and control apoptosis in cancer cells. These findings not only serve as an exceptional tool for advancing our understanding of the ferroptosis response, but furthermore play a vital role in comprehending the biological characteristics of LDs in relation to ferroptosis.


Assuntos
Ferroptose , Gotículas Lipídicas , Humanos , Animais , Corantes Fluorescentes , Células HeLa , Viscosidade , Peixe-Zebra , Ferro , Paclitaxel/farmacologia
5.
Exp Cell Res ; 435(2): 113932, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246397

RESUMO

RNA binding protein RBM10 participates in various RNA metabolism, and its decreased expression or loss of function by mutation has been identified in many human cancers. However, how its dysregulation contributes to human cancer pathogenesis remains to be determined. Here, we found that RBM10 expression was decreased in breast tumors, and breast cancer patients with low RBM10 expression presented poorer survival rates. RBM10 depletion in breast cancer cells significantly promotes the cellular proliferation and migration. We further demonstrated that RBM10 forms a triple complex with YBX1 and phosphatase 1B (PPM1B), in which PPM1B serves as the phosphatase of YBX1. RBM10 knock-down markedly attenuated association between YBX1 and PPM1B, leading to elevated levels of YBX1 phosphorylation and its nuclear translocation. Furthermore, cancer cells with RBM10 depletion had a significantly accelerated tumor growth in nude mice. Importantly, these enhanced tumorigenic phenotypes can be reversed by overexpression of PPM1B. Our findings provide the mechanistic bases for functional loss of RBM10 in promoting tumorigenicity, and are potentially useful in the development of combined therapeutic strategies for cancer patients with defective RBM10.


Assuntos
Neoplasias da Mama , Carcinogênese , Animais , Camundongos , Humanos , Feminino , Camundongos Nus , Carcinogênese/genética , Fosforilação , Proliferação de Células/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Monoéster Fosfórico Hidrolases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo
6.
Int Orthop ; 48(2): 573-580, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837544

RESUMO

PURPOSE: A fracture of the posterior talar process is easily missed because of its hidden position. Inappropriate treatment is likely to result in complications, such as nonunion of the fracture and traumatic arthritis. This study evaluated the outcomes of arthroscopy-assisted reduction combined with robotic-assisted screw placement in the treatment of fractures of the posterior talar process. METHODS: The clinical data for nine patients who underwent surgical treatment of a fracture of the posterior talar process at our institution between September 2017 and January 2021 were retrospectively reviewed. Arthroscopy-assisted reduction of the fracture was performed, and a cannulated screw was placed using three-dimensional orthopedic robotic-assisted navigation. RESULTS: The patients (seven men, two women) had a mean age of 36.33 ± 9.77 years and were followed up for 21 ± 5.43 months. The operation time was 106.67 ± 24.5 min with blood loss of 47.78 ± 9.05 ml. Primary healing was obtained in all cases, and no patient sustained a nerve or tendon injury, had fracture nonunion, or developed talar osteonecrosis. One patient developed subtalar arthritis, for which subtalar joint fusion was performed; pain was markedly less severe after cleaning. CONCLUSION: Arthroscopy-assisted reduction and robotic-assisted screw placement have the advantages of visualization of fracture reduction, minimal injury, and precise screw placement in the treatment of fractures of the posterior talar process.


Assuntos
Artrite , Fraturas Ósseas , Procedimentos Cirúrgicos Robóticos , Tálus , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Artroscopia/efeitos adversos , Estudos Retrospectivos , Fraturas Ósseas/cirurgia , Parafusos Ósseos , Tálus/diagnóstico por imagem , Tálus/cirurgia , Tálus/lesões , Resultado do Tratamento
7.
Exp Ther Med ; 26(6): 556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37941588

RESUMO

Gastrointestinal (GI) perforation is common in the emergency department and has a high mortality rate. The present study aimed to identify risk factors for mortality in patients with GI perforation. The objective was to assess and prognosticate the surgical outcomes of patients, aiming to ascertain the efficacy of the procedure for individual patients. A retrospective cohort study of patients with GI perforation who underwent surgery in a public tertiary hospital in China from January 2012 to June 2022 was performed. Demographics, clinical characteristics, laboratory and imaging results, and outcomes were collected from electronic medical records. The primary outcome measure was in-hospital mortality, and patients were divided into survivor and non-survivor groups based on this measure. Univariate and multivariable logistic regression analyses were performed to obtain independent factors associated with mortality. A total of 529 patients with GI perforation were eligible for inclusion. The in-hospital mortality rate after emergency surgery was 10.59%. The median age of the patients was 60 years (interquartile range, 44-72 years). Multivariable logistic regression analysis indicated that age, shock on admission, elevated serum creatinine (sCr) and white blood cell (WBC) count <3.5x109 or >20x109 cells/l were predictors of in-hospital mortality. In conclusion, advanced age, shock on admission, elevated sCr levels and significantly abnormal WBC count are associated with higher in-hospital mortality following emergency laparotomy.

8.
Exploration (Beijing) ; 3(5): 20220141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37933289

RESUMO

Bladder cancer (BCa) is one of the most common malignancies worldwide. Although multiple efforts have been made, the 5-year survival rate of patients with BCa remains unchanged in recent years. Overexpression of the epidermal growth factor receptor (EGFR) is found in ≈74% of BCa tissue specimens; however, current EGFR-based targeted therapies show little benefit for BCa patients, as the EGFR downstream pathways appear to be circumvented by other receptor tyrosine kinases (RTKs). In this study, two natural products are identified, namely triptolide (TPL) and hesperidin (HSP), that target and inhibit the EGFR and its downstream PI3K/AKT pathway in BCa. To synergistically combine triptolide and hesperidin, a succinic acid linker was employed to conjugate them and formed an amphiphilic TPL-HSP EGFR-targeting prodrug (THE), which further self-assembled to generate nanoparticles (THE NPs). These NPs allowed the EGFR-targeted delivery of the triptolide and hesperidin, and simultaneous inhibition of the EGFR and PI3K/AKT both in vitro and in vivo. This study provides a promising EGFR-targeted delivery approach with the dual inhibition of the EGFR and PI3K/AKT, while also exhibiting a high drug loading and low toxicity. Our formulation may be a suitable option to deliver natural products for BCa treatment by EGFR-targeted therapy.

9.
World J Urol ; 41(12): 3567-3573, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37906264

RESUMO

PURPOSE: The purpose of this study was to develop predictive models for postoperative estimated glomerular filtration rate (eGFR) based on the split glomerular filtration rate measured by radionuclide (rGFR), as choosing radical nephrectomy (RN) or partial nephrectomy (PN) for complex renal masses requires accurate prediction of postoperative eGFR. METHODS: Patients who underwent RN or PN for a single renal mass at Xijing Hospital between 2008 and 2022 were retrospectively included. Preoperative split rGFR was evaluated using technetium-99 m-diethylenetriaminepentaacetic acid (Tc-99 m DTPA) renal dynamic imaging, and the postoperative short-term (< 7 days) and long-term (3 months to 5 years) eGFRs were assessed. Linear mixed-effect models were used to predict eGFRs, with marginal R2 reflecting predictive ability. RESULTS: After excluding patients with missing follow-up eGFRs, the data of 2251 (RN: 1286, PN: 965) and 2447 (RN: 1417, PN: 1030) patients were respectively included in the long-term and short-term models. Two models were established to predict long-term eGFRs after RN (marginal R2 = 0.554) and PN (marginal R2 = 0.630), respectively. Two other models were established to predict short-term eGFRs after RN (marginal R2 = 0.692) and PN (marginal R2 = 0.656), respectively. In terms of long-term eGFRs, laparoscopic and robotic surgery were superior to open surgery in both PN and RN. CONCLUSIONS: We developed novel tools for predicting short-term and long-term eGFRs after RN and PN based on split rGFR that can help in preoperative decision-making.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Estudos Retrospectivos , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/cirurgia , Taxa de Filtração Glomerular , Nefrectomia/métodos , Rim/diagnóstico por imagem , Rim/cirurgia , Rim/fisiologia , Radioisótopos , Carcinoma de Células Renais/cirurgia
10.
Environ Res ; 236(Pt 1): 116732, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37495065

RESUMO

Chinese rural domestic waste has increased considerably with the modernization of agriculture and urbanization. Pyrolysis gasification is a common high-temperature waste treatment method. However, this method is usually accompanied by a large amount of particle emission. In this study, a rural domestic waste pyrolysis gasification station in Gansu Province, Northwest China, was selected for research. The particle emission characteristics of this station were analyzed, and the results showed that the original particle removal technologies were inefficient in fine particles. Hence, a new method of fine particle treatment, i.e., Cloud-Air-Purifying (CAP) technology, was explored herein. In CAP, fine particles grow in size via heterogeneous condensation in a supersaturated water vapor environment and are then collected efficiently using a supergravity field. A laboratory-scale pyrolysis gasifier and CAP equipment were built. Moreover, the CAP removal efficiency for particles generated from four typical rural domestic waste categories was studied. The results showed that CAP technology considerably increased the efficiency of fine particle removal. However, the removal efficiency for particles released owing to the incineration of wood was only ∼75%. This was because the tar substances formed during wood pyrolysis were attached to the surface of escaping particles, which led to a decrease in their hydrophilicity and particle condensation growth. To address this issue, the improvement in particle hydrophilicity using different surfactants was studied via molecular dynamic simulations. When the increase in water molecule adsorption, surface polarity, and the solid-liquid interaction energy for different surfactants were compared, alkylphenol ethoxylate (OP10) proved to be the most effective surfactant. Finally, the improved CAP technology combined with OP10 was applied to the on-site pyrolysis gasification flue gas treatment. Long term monitoring of the proposed technology revealed that particle removal efficiency remained >94%, exhibiting excellent fine particle removal. The successful application of the proposed technology demonstrates its potential for further application.

11.
Phytochemistry ; 212: 113729, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247765

RESUMO

Twenty-five grayanane diterpenoids including six undescribed compounds (craibiodenoside A-F), were isolated from the leaves of Craibiodendron yunnanense W. W. Smith. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and HR-ESI-MS spectrometric analyses. All compounds were evaluated for their anti-inflammatory activities by inhibiting the release of interleukin-6 (IL-6) in lipopolysaccharide (LPS)-induced RAW264.7 cells. The results demonstrated that three undescribed compounds craibiodenoside A, B, F, and three known compounds could inhibit the release of IL-6 significantly. In addition, the antinociceptive activities of compounds were assessed using acetic acid-induced writhing test. Craibiodenoside D, grayanoside D, and rhodojaponins VI exhibited notable antinociceptive activities. Specifically, rhodojaponins VI exhibited antinociceptive activity with the inhibition percentage of 87.6%.


Assuntos
Diterpenos , Ericaceae , Analgésicos/farmacologia , Analgésicos/química , Interleucina-6 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ericaceae/química , Espectroscopia de Ressonância Magnética , Diterpenos/farmacologia , Diterpenos/química
12.
RSC Adv ; 13(18): 12618-12633, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37101950

RESUMO

The iron and steel industry is one of the foundational industries in China. However, with the introduction of energy-saving and emission reduction policies, desulfurization of blast furnace gas (BFG) is also necessary for further sulfur control in the iron and steel industry. Carbonyl sulfide (COS) has become a significant and difficult issue in the BFG treatment due to its unique physical and chemical properties. The sources of COS in BFG are reviewed, and the commonly used removal methods for COS are summarized, including the types of adsorbents commonly used in adsorption methods and the adsorption mechanism of COS. The adsorption method is simple in operation, economical, and rich in types of adsorbents and has become a major focus of current research. At the same time, commonly used adsorbent materials such as activated carbon, molecular sieves, metal-organic frameworks (MOFs), and layered hydroxide adsorbents (LDHs) are introduced. The three mechanisms of adsorption including π-complexation, acid-base interaction, and metal-sulfur interaction provide useful information for the subsequent development of BFG desulfurization technology.

13.
Front Surg ; 9: 961258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36468079

RESUMO

Background: Healthcare seeking behavior has been widely impacted due to the restricted movements of individuals during the Coronavirus disease-19 (COVID-19) pandemic. This study aims to perform risk stratification in patients requiring timely intervention during the recovery periods. Methods: Operation notes of acute appendicitis (AA) patients within a hospital were analyzed during three six-month periods (23 January-23 July in 2019, 2020, and 2021, respectively). Patient data were collected retrospectively including demographics, pre-emergency status, perioperative information, postoperative outcomes, and follow-up results. Results: 321 patients were included in this study, with 111, 86, and 124 patients in 2019, 2020, and 2021 groups, respectively. The median age of patients decreased by 4 years in 2020 as compared to that in 2019. The proportion of pre-hospitalization symptoms duration of more than 48 h in the 2020 group was higher (36.05% in 2020 vs. 22.52% in 2019). Length of hospital stay (LOS) in 2020 was shorter than it was during the same period in 2019 (4.77 vs. 5.64) and LOS in 2021 was shorter than in 2019 (4.13 vs. 5.64). Compared to the lockdown period, the proportion of patients with recurrent AA was higher in the post-lockdown period (15.1% vs. 27.4%). The median age was 34 years (vaccinated) vs. 37 years (unvaccinated). Logistic regression suggests that elevated C-reactive protein (CRP) (OR = 1.018, CI = 1.010-1.028), white cell count (WBC) (OR = 1.207, CI = 1.079-1.350), female (OR = 2.958, CI = 1.286-6.802), recurrent (OR = 3.865, CI = 1.149-12.997), and fecalith (OR = 2.308, CI = 1.007-5.289) were associated with complicated appendicitis (CA). Conclusion: The lockdown measures during the COVID-19 epidemic are shown to be correlated with a reduction in the proportion of AA patients who underwent surgery, particularly in older adults. Risk factors for CA include elevated CRP, WBC, female, recurrent, and fecalith.

14.
Front Oncol ; 12: 928373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978816

RESUMO

Warburg effect is a pivotal hallmark of cancers and appears prevalently in renal cell carcinoma (RCC). FBP1 plays a negative role in Warburg effect as a rate-limiting enzyme in gluconeogenesis, yet its mechanism in RCC remains to be further characterized. Herein, we revealed that FBP1 was downregulated in RCC tissue samples and was related to the poor survival rate of RCC. Strikingly, miR-24-1 whose DNA locus is overlapped with enhancer region chr9:95084940-95087024 was closely linked with the depletion of FBP1 in RCC. Of note, miRNAs like miR-24-1 whose DNA loci are enriched with H3K27ac and H3K4me1 modifications are belonging to nuclear activating miRNAs (NamiRNAs), which surprisingly upregulate target genes in RCC through enhancer beyond the conventional role of repressing target gene expression. Moreover, miR-24-1 reactivated the expression of FBP1 to suppress Warburg effect in RCC cells, and subsequently inhibited proliferation and metastasis of RCC cells. In mechanism, the activating role of miR-24-1 was dependent on enhancer integrity by dual luciferase reporter assay and CRISPR/Cas9 system. Ultimately, animal assay in vivo validated the suppressive function of FBP1 on 786-O and ACHN cells. Collectively, the current study highlighted that activation of FBP1 by enhancer-overlapped miR-24-1 is capable of contributing to Warburg effect repression through which RCC progression is robustly blocked, providing an alternative mechanism for RCC development and as well implying a potential clue for RCC treatment strategy.

15.
Phytomedicine ; 104: 154335, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35858515

RESUMO

BACKGROUND: In recent years, the T-cell therapy and immune checkpoint inhibitors toward CTLA-4 and PD-1/PD-L1 axis antibody therapy have acquired encouraging success. However, most of patients were still not benefited with lots of troubles, such as low penetration of tissues/cells, strong immunogenicity and cytokine release syndrome, and long manufacturing process and expensive costs. By contrast, the immune-modulating small molecules possessed natural advantages to overcome these obstacles and might achieve greater success. PURPOSE: Exploring the potent immune-modulating natural small molecules and revealing what kinds of molecules or structures with the immunomodulatory activity against cancers. METHODS: A novel non-cytotoxic T-cell immunomodulating screening model was used to identify the cytotoxic/selective/immunomodulatory bioactivity for 148 natural steroidal saponins. The structure-activity relationships (SARs) research was used to reveal the key groups for immunomodulation/cytotoxicity/selectivity. The negative selection was used to isolate and purify the T-cell. The cell viability assay was used to measure the anti-cancer effect in vitro. The ELISA assay was used to detect the cytokines for IL-1ß, IL-6, TNF-α, IFN-γ, IL-12, perforin and granzyme B (GZMB). The western blotting assay was used to research the immunomodulatory mechanism. The siRNA knockdown was used to generate the IFN-γ resistant melanoma cells. The NOG immune-deficient mice were used to evaluate the anti-tumor efficacy in vivo. The peripheral blood samples from 10 cancer patients were used to detect the broad population anti-tumor efficacy. RESULTS: It was reported that the correlation among structures and immunomodulation/ cytotoxicity/selectivity, in which opening ring-F with 26-O-glucopyranosyl, disaccharide and trisaccharide chains at C-3, steric hindrance and polarity of C-22 were key immunomodulatory groups. Moreover, taccaoside A was identified as the most potent candidate against cancer cells, including non-small cell lung cancer, triple negative breast cancer, and the IFN-γ resistant melanoma, partly through enhancing T lymphocyte mTORC1-Blimp-1 signal to secrete GZMB. Besides, 10 patients derived T-cell also would be modulated against cancer cells in vitro. Moreover, the overall survival was great extended (>140 days vs 93 days) with nearly 100% tumor burden disappearance (0 mm3vs 1006 ± 79.5 mm3) in mice. CONCLUSION: This work demonstrated one possibility for this concerned purpose, and identified a potent immune-modulating natural molecule taccaoside A, which might contribute to cancer immunotherapy in future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Melanoma , Saponinas , Animais , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Camundongos , Saponinas/farmacologia
16.
J Biomed Nanotechnol ; 18(3): 754-762, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35715914

RESUMO

Gold nanorods (AuNRs) have unique optical properties and biological affinity and can be used to treat tumors when conjugated with other protein molecules. Our previous studies have shown that EGFR monoclonal antibody (EGFRmAb)-modified AuNRs exert strong antitumor activity in vitro by inducing apoptosis. In this study, we tested the effects of EGFRmAb-modified AuNRs on laryngeal squamous cell cancer (LSCC) in vitro and in vivo. The in vitro results showed that EGFRmAb-modified AuNRs inhibited NP-69, BEAS-2B and Hep-2 cell growth and induced mitochondria-dependent apoptosis. The mitochondrial membrane potential was reduced, leading to the release of cytochrome C (Cyt C) and consequent activation of the intrinsic mitochondrial apoptosis pathway. Moreover, we observed that the occurrence of mitochondrial apoptosis is related to the destruction of the lysosome-mitochondria axis. To verify the effects in vivo, we also established a laryngeal tumor model in nude mice by subcutaneous transplantation. In model mice treated with EGFRmAb-modified AuNRs and irradiated with an NIR laser, tumor cell apoptosis and tumor growth were inhibited. These results suggest that EGFRmAb-modified AuNRs induced apoptosis through the intrinsic mitochondrial apoptotic pathway and are a potential candidate for cancer therapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Nanotubos , Animais , Anticorpos Monoclonais/metabolismo , Apoptose , Linhagem Celular Tumoral , Células Epiteliais , Receptores ErbB/metabolismo , Ouro/farmacologia , Neoplasias de Cabeça e Pescoço/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo
17.
Front Oncol ; 12: 890193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619903

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor with a poor prognosis. The identification of effective molecular markers is of great significance for diagnosis and treatment. Aquaporins (AQPs) are a family of water channel proteins that exhibit several properties and play regulatory roles in human carcinogenesis. However, the association between Aquaporin-5 (AQP5) expression and prognosis and tumor-infiltrating lymphocytes in PAAD has not been reported. Methods: AQP5 mRNA expression, methylation, and protein expression data in PAAD were analyzed using GEPIA, UALCAN, HAP, METHSURV, and UCSC databases. AQP5 expression in PAAD patients and cell lines from our cohort was examined using immunohistochemistry and Western blotting. The LinkedOmics database was used to study signaling pathways related to AQP5 expression. TIMER and TISIDB were used to analyze correlations among AQP5, tumor-infiltrating immune cells, and immunomodulators. Survival was analyzed using TCGA and Kaplan-Meier Plotter databases. Results: In this study, we investigated AQP5 expression in PAAD and determined whether the expression of AQP5 is a strong prognostic biomarker for PAAD. We searched and analyzed public cancer databases (GEO, TCGA, HAP, UALCAN, GEPIA, etc.) to conclude that AQP5 expression levels were upregulated in PAAD. Kaplan-Meier curve analysis showed that high AQP5 expression positively correlated with poor prognosis. Using TIMER and TISIDB, we found that the expression of AQP5 was associated with different tumor-infiltrating immune cells, especially macrophages. We found that hypomethylation of the AQP5 promoter region was responsible for its high expression in PAAD. Conclusions: AQP5 can serve as a novel biomarker to predict prognosis and immune infiltration in PAAD.

18.
J Immunol Res ; 2022: 7599098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310605

RESUMO

Ovarian cancer (OC) is the most lethal gynecologic cancer. Many studies have reported that RIPK4 (receptor interacting serine/threonine kinase 4) displayed a dysregulated level in many types of tumors. However, its expressions and functions in OC were rarely reported. The levels of RIPK4 were detected in OC and nontumor specimens using TCGA and GEO datasets. The prognostic values of RIPK4 in patients were determined using Kaplan-Meier methods and Kaplan-Meier assays. GO assays and KEGG pathway assays were carried out for functional enrichments. CIBERSORT was applied for estimating the fractions of immune cell types. Finally, RIPK4 was validated in pan-cancer. In this study, our group found that RIPK4 exhibited a higher level of RIPK4 in OC specimens than nontumor specimens. Survival studies revealed that patients with high RIPK4 expressions showed a shorter overall survival than those with low RIPK4 expression. Multivariate assays further confirmed that RIPK4 expression was an independent prognostic element for OC. KEGG pathway analysis displayed that the dysregulated genes in specimens with high RIPK4 expressions were enriched in focal adhesion, proteoglycans in cancer, central carbon metabolism in cancer, and insulin secretion. Correlation analyses showed that several TICs were positively correlated with RIPK4 expression. The pan-cancer validation results showed that RIPK4 was associated with survival in five tumors. Overall, our findings suggested RIPK4 as a prognostic marker in OC.


Assuntos
Neoplasias Ovarianas , Proteínas Serina-Treonina Quinases , Biomarcadores , Carcinoma Epitelial do Ovário , Feminino , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Prognóstico
19.
FASEB J ; 36(3): e22204, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35147984

RESUMO

N6-methyladenosine is considered to be the most common and abundant internal chemical modification among the more than 150 identified chemical RNA modifications. It is involved in most biological processes and actively participates in the regulation of animal reproduction. However, the potential function of m6 A in the pituitaries of mammals is not yet clear. It is also unknown whether m6 A is involved in the secretion and regulation of FSH by GnRH, which in turn affects mammalian reproduction. In this study, rats were treated with gonadorelin to simulate physiological GnRH-mediated regulation of FSH synthesis and secretion, and m6 A-seq was used to analyze the differential m6 A modification of the rat pituitary after gonadorelin treatment. A whole-transcriptome map of m6 A in the rat pituitary gland before and after gonadorelin treatment was successfully created. A total of 6413 differential peaks were identified, of which 3764 m6 A peaks were upregulated and 2649 m6 A peaks were downregulated. Among the 709 differentially expressed genes, 250 genes were discovered with differential methylation modifications. Intriguingly, the altered m6 A peaks within mRNAs were enriched in steroid biosynthetic processes and responses to cAMP. The results of the study will lay a foundation for further exploration of the potential role of m6 A modification in the regulation of reproductive hormone secretion and provide a theoretical basis for the application of GnRH analogs in mammalian artificial reproduction.


Assuntos
Adenosina/análogos & derivados , Hormônio Liberador de Gonadotropina/metabolismo , Adeno-Hipófise/metabolismo , Processamento Pós-Transcricional do RNA , Adenosina/metabolismo , Animais , Hormônio Liberador de Gonadotropina/farmacologia , Masculino , Metilação , Adeno-Hipófise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
20.
Saudi J Biol Sci ; 28(6): 3526-3533, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34121895

RESUMO

Virus is the most menacing factor for plant, which causes enormous economic losses in agriculture worldwide. Tobacco mosaic virus is most hazardous virus among the plants that can spread through biological and non-biological sources. TMV is ancient virus that causes huge economic losses to pepper cucumber ornamental crops and tobacco. It can be controlled by reducing the population of vector through pesticide application. However, the rapid usage of synthetic chemicals causes environmental pollution and destroys our ecosystem. Consequently, different approaches just like natural derivatives should be adopted for the environmental friendly management for TMV. This in vitro study demonstrated the potential role of natural metabolites such as poultry manure and plant extracts such as salicylic acid and citric acid for the control of TMV. Two different concentrations of poultry manure 60G and 30G were used. Poultry manure was mixed with the soil at the time of sowing. Disease severity was minimum at maximum concentration as compared to the control. Meanwhile, two different concentrations of salicylic acid and citric acid 60% and 90% were applied by foliar sprayer after three-leaf stages. Disease severity was observed after 5, 10, 15, 20, 25, and 30 days after disease inoculation. Here also maximum concentration showed the minimum disease severity and higher concentration of both animal and plants extracts were used for following experiment. Quantitative real-time PCR (RT-qPCR) results demonstrated that different plant defense-related genes such as PR1a, PAL, PR5, NPR1, PRIb, and PDF1.2 were up-regulated. Furthermore, applications of each treatment-induced systemic resistance against a wide range of pathogen including TMV and fungal pathogen Botrytis cinerea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA