Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell Death Dis ; 15(4): 244, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575607

RESUMO

The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.


Assuntos
Interleucina-18 , Neoplasias Pancreáticas , Humanos , Glicosilação , Interleucina-18/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas/metabolismo , Vias Biossintéticas , Hexosaminas , Microambiente Tumoral , Proteína 1 de Ligação a Y-Box/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética
2.
Curr Med Imaging ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881087

RESUMO

OBJECTIVE: This study aimed to determine the utility of a radiomic nomogram combined with clinical imaging and radiomic features based on MRI for the diagnosis of triple-negative breast cancer. METHODS: Multi-parametric MRI images of 136 breast cancer patients were retrospectively analyzed, 95 cases were stratified into the training cohort, and 41 cases were selected for the test group. According to the pathological molecular typing, the patients were divided into 23 cases of triple-negative breast cancer and 113 cases of non-triple-negative breast cancer. ITK software was used to manually delineate the lesion volume region of interest (VOI), and the Pyradiomics package was used to extract radiomic features for screening and model building. The platform was then used to analyze the clinical and imaging risk factors of breast cancer to build a characteristic model separately. Finally, a radiomic nomogram was constructed by integrating the radiomic and independent clinical image features. The diagnostic performance of the model was assessed using ROC curves. RESULTS: Univariate and multivariate analyses showed that the menstrual cycle, glandular density, and skin thickening were risk factors for clinical imaging characteristics of triple-negative breast cancer. The Area Under the Curve (AUC) was 0.839 and 0.826 for univariate and multivariate analysis, respectively. After screening, 11 radiomic features participated in the calculation of the radiomic score, and its AUC in the test set was 0.803. Combining it further with clinical models, the AUC improved to 0.899. CONCLUSION: The radiomic nomogram developed in this study has great value in the diagnosis of triple-negative breast cancer.

3.
Cancer Lett ; 576: 216411, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757903

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is extremely malignant with limited treatment options. Deubiquitinases (DUBs), which cleave ubiquitin on substrates, can regulate tumor progression and are appealing therapeutic targets, but there are few related studies in PDAC. In our study, we screened the expression levels and prognostic value of USP family members based on published databases and selected USP10 as the potential interventional target in PDAC. IHC staining of the PDAC microarray revealed that USP10 expression was an adverse clinical feature of PDAC. USP10 promoted tumor growth both in vivo and in vitro in PDAC. Co-IP experiments revealed that USP10 directly interacts with PABPC1. Deubiquitination assays revealed that USP10 decreased the K27/29-linked ubiquitination level of the RRM2 domain of PABPC1. Deubiquitinated PABPC1 was able to couple more CLK2 mRNA and eIF4G1, which increased the translation efficiency. Replacing PABPC1 with a mutant that could not be ubiquitinated impaired USP10 knock-down-mediated tumor suppression in PDAC. Targeting USP10 significantly delayed the growth of cell-derived xenograft and patient-derived xenograft tumors. Collectively, our study first identified USP10 as the DUB of PABPC1 and provided a rationale for potential therapeutic options for PDAC with high USP10 expression.

4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762128

RESUMO

Up to 50% of hepatocellular carcinoma (HCC) is caused by hepatitis B virus (HBV) infection, and the surface protein of HBV is essential for the progression of HBV-related HCC. The expression of large HBV surface antigen (LHB) is presented in HBV-associated HCC tissues and is significantly associated with the development of HCC. Gene set enrichment analysis revealed that LHB overexpression regulates the cell cycle process. Excess LHB in HCC cells induced chronic endoplasmic reticulum (ER) stress and was significantly correlated with tumor growth in vivo. Cell cycle analysis showed that cell cycle progression from G1 to S phase was greatly enhanced in vitro. We identified intensive crosstalk between ER stress and cell cycle progression in HCC. As an important regulator of the G1/S checkpoint, p27 was transcriptionally upregulated by transcription factors ATF4 and XBP1s, downstream of the unfolded protein response pathway. Moreover, LHB-induced ER stress promoted internal ribosome-entry-site-mediated selective translation of p27, and E3 ubiquitin ligase HRD1-mediated p27 ubiquitination and degradation. Ultimately, the decrease in p27 protein levels reduced G1/S arrest and promoted the progress of HCC by regulating the cell cycle.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Inibidor de Quinase Dependente de Ciclina p27 , Hepatite B/complicações , Vírus da Hepatite B , Fatores Imunológicos , Neoplasias Hepáticas/genética , Proteínas de Membrana , Resposta a Proteínas não Dobradas
5.
Cancer Commun (Lond) ; 43(9): 981-1002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37405956

RESUMO

BACKGROUND: The mechanism of hepatitis B virus (HBV)-induced carcinogenesis remains an area of interest. The accumulation of hepatitis B surface antigen in the endoplasmic reticulum (ER) of hepatocytes stimulates persistent ER stress. Activity of the unfolded protein response (UPR) pathway of ER stress may play an important role in inflammatory cancer transformation. How the protective UPR pathway is hijacked by cells as a tool for malignant transformation in HBV-related hepatocellular carcinoma (HCC) is still unclear. Here, we aimed to define the key molecule hyaluronan-mediated motility receptor (HMMR) in this process and explore its role under ER stress in HCC development. METHODS: An HBV-transgenic mouse model was used to characterize the pathological changes during the tumor progression. Proteomics and transcriptomics analyses were performed to identify the potential key molecule, screen the E3 ligase, and define the activation pathway. Quantitative real-time PCR and Western blotting were conducted to detect the expression of genes in tissues and cell lines. Luciferase reporter assay, chromatin immunoprecipitation, coimmunoprecipitation, immunoprecipitation, and immunofluorescence were employed to investigate the molecular mechanisms of HMMR under ER stress. Immunohistochemistry was used to clarify the expression patterns of HMMR and related molecules in human tissues. RESULTS: We found sustained activation of ER stress in the HBV-transgenic mouse model of hepatitis-fibrosis-HCC. HMMR was transcribed by c/EBP homologous protein (CHOP) and degraded by tripartite motif containing 29 (TRIM29) after ubiquitination under ER stress, which caused the inconsistent expression of mRNA and protein. Dynamic expression of TRIM29 in the HCC progression regulated the dynamic expression of HMMR. HMMR could alleviate ER stress by increasing autophagic lysosome activity. The negative correlation between HMMR and ER stress, positive correlation between HMMR and autophagy, and negative correlation between ER stress and autophagy were verified in human tissues. CONCLUSIONS: This study identified the complicated role of HMMR in autophagy and ER stress, that HMMR controls the intensity of ER stress by regulating autophagy in HCC progression, which could be a novel explanation for HBV-related carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/genética , Vírus da Hepatite B/genética , Camundongos Transgênicos , Carcinogênese , Proteínas de Ligação a DNA , Fatores de Transcrição
6.
J Pharm Anal ; 13(6): 616-624, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440907

RESUMO

Glioblastoma (GBM) is a lethal cancer with limited therapeutic options. Dendritic cell (DC)-based cancer vaccines provide a promising approach for GBM treatment. Clinical studies suggest that other immunotherapeutic agents may be combined with DC vaccines to further enhance antitumor activity. Here, we report a GBM case with combination immunotherapy consisting of DC vaccines, anti-programmed death-1 (anti-PD-1) and poly I:C as well as the chemotherapeutic agent cyclophosphamide that was integrated with standard chemoradiation therapy, and the patient remained disease-free for 69 months. The patient received DC vaccines loaded with multiple forms of tumor antigens, including mRNA-tumor associated antigens (TAA), mRNA-neoantigens, and hypochlorous acid (HOCl)-oxidized tumor lysates. Furthermore, mRNA-TAAs were modified with a novel TriVac technology that fuses TAAs with a destabilization domain and inserts TAAs into full-length lysosomal associated membrane protein-1 to enhance major histocompatibility complex (MHC) class I and II antigen presentation. The treatment consisted of 42 DC cancer vaccine infusions, 26 anti-PD-1 antibody nivolumab administrations and 126 poly I:C injections for DC infusions. The patient also received 28 doses of cyclophosphamide for depletion of regulatory T cells. No immunotherapy-related adverse events were observed during the treatment. Robust antitumor CD4+ and CD8+ T-cell responses were detected. The patient remains free of disease progression. This is the first case report on the combination of the above three agents to treat glioblastoma patients. Our results suggest that integrated combination immunotherapy is safe and feasible for long-term treatment in this patient. A large-scale trial to validate these findings is warranted.

7.
Eur J Med Chem ; 257: 115489, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37235999

RESUMO

B7-H3 (immunoregulatory protein B7-homologue 3) is overexpressed in many cancer cells with limited expression in normal tissues, considered to be a promising target for tumor therapeutics. Clinical trials of antibody-drug conjugates (ADCs) against different targets for glioblastoma have been investigated and showed potent efficacies. In this study, we developed a homogeneous ADC 401-4 with a drug-to-antibody ratio (DAR) of 4, which was prepared by conjugation of Monomethyl auristatin E (MMAE) to a humanized anti-B7-H3 mAb 401, through a divinylsulfonamide-mediated disulfide re-bridging approach. In vitro studies, 401-4 displayed specific killing against B7-H3-expressing tumors and was more effective in cells with higher levels of B7-H3 for different glioblastoma cells. 401-4 was furthered labeled with Cy5.5 to yield a fluorescent conjugate 401-4-Cy5.5. The in vivo imaging studies showed that the conjugate accumulated in tumor regions and exhibited the ability to target-specific delivery. In addition, significant antitumor activities for 401-4 was observed against U87-derived tumor xenografts in a dose dependent manner.


Assuntos
Glioblastoma , Imunoconjugados , Humanos , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
FEBS J ; 290(18): 4577-4590, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37245155

RESUMO

Intrinsic drug resistance mechanisms of tumor cells often reduce intracellular drug concentration to suboptimal levels. Epithelial-to-mesenchymal transition (EMT) is a pivotal process in tumor progression and metastasis that confers an aggressive phenotype as well as resistance to chemotherapeutics. Therefore, it is imperative to develop novel strategies and identify new targets to improve the overall efficacy of cancer treatment. We developed SN38 (active metabolite of irinotecan)-assembled glycol chitosan nanoparticles (cSN38) for the treatment of pancreatic ductal adenocarcinoma (PDAC). Furthermore, cSN38 and the TGF-ß1 inhibitor LY364947 formed composite nanoparticles upon self-assembly (cSN38 + LY), which obviated the poor aqueous solubility of LY364947 and enhanced drug sensitivity. The therapeutic efficacy of cSN38 + LY nanotherapeutics was studied in vitro and in vivo using suitable models. The cSN38 nanoparticles exhibited an antitumor effect that was significantly attenuated by TGF-ß-induced EMT. The cellular uptake of SN38 was impeded during EMT, which affected the therapeutic efficacy. The combination of LY364947 and cSN38 markedly enhanced the cellular uptake of SN38, increased cytotoxic effects, and inhibited EMT in PDAC cells in vitro. Furthermore, cSN38 + LY significantly inhibited PDAC xenograft growth in vivo. The cSN38 + LY nanoparticles increased the therapeutic efficacy of cSN38 via repressing the EMT of PDAC cells. Our findings provide a rationale for designing nanoscale therapeutics to combat PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fator de Crescimento Transformador beta/genética , Transição Epitelial-Mesenquimal/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
9.
Bioorg Chem ; 134: 106463, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924655

RESUMO

Phenyldivinylsulfonamides emerged from a series of divinylsulfonamides, demonstrating their ability to effectively re-bridge disulfide bonds. This kind of linkers was attached to monomethyl auristatin E (MMAE) and further conjugated with a model antibody, trastuzumab. After optimization, the linker 20 can deliver stable and highly homogenous DAR (Drug-to-Antibody Ratio) four antibody-drug conjugates (ADCs). The method was also applicable for other IgG1 antibodies to obtain ADCs with controlled four payloads. Moreover, the MMAE-bearing ADC is potent, selective and efficacious against target cell lines.


Assuntos
Antineoplásicos , Imunoconjugados , Imunoconjugados/farmacologia , Imunoconjugados/química , Linhagem Celular Tumoral , Trastuzumab/química , Antineoplásicos/farmacologia , Antineoplásicos/química
10.
Front Genet ; 13: 871531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035131

RESUMO

Primary primitive neuroectodermal tumor (PNET) in the female tract is rare. Recently, a case of cervical PNET was diagnosed in our hospital. A 29-year-old pregnant woman presented with a cystic-solid cervical mass at the 7th week of gestation. The mass grew rapidly during follow-up and ruptured at the 22nd week. A biopsy was performed on the mass. Pathological examination revealed a malignant neoplasm composed of small cells which exhibited positive immunohistochemical (IHC) staining for CD99, SYN, and FLI1. Fluorescence in situ hybridization (FISH) displayed the presence of EWS-FLI1 fusion gene resulting from the chromosomal translocation t (11;22, q24;q12), which confirmed the diagnosis of cervical PNET. The reverse transcription-polymerase chain reaction (RT-PCR) results showed type 2 EWS-FLI1 fusion occurred in this tumor, suggesting a poor prognosis. The patient underwent surgical resection and was given adjuvant chemotherapy followed by pelvic radiotherapy. PNET arising from the genital tract, especially in the uterine cervix, is very rare and presents a diagnostic challenge. FISH and RT-PCR analysis are helpful for the diagnosis of such a tumor at an unusual site, as in the present case.

12.
Cancer Lett ; 542: 215762, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35659513

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is invasive and heterogeneous, and existing therapies are sometimes unsuccessful. Chimeric antigen receptor (CAR) T cell therapy is a breakthrough tumor treatment method, particularly for B cell acute lymphoblastic leukemia. We found that CD147 was highly expressed in tumor T cells of T-ALL patients and T cell lymphoma. Therefore, CD147-CAR T cells that contain a humanized single-chain variable fragment targeting human CD147 and a second-generation CAR frame were constructed for treating T-ALL. CD147-CAR T cells were able to maintain a healthy proliferation rate, preserving a subset of CD62L+/CCR7+ memory T cells. CD147-CAR T cells showed a potent anti-tumor activity against human T-ALL cell line and T-ALL blasts, releasing high level of cytokines in the process. However, CD147-CAR T cells exhibited potential safety toward human normal cells and CD147-deficent cells. NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mice were used to establish a T-ALL xenograft model and CD147-CAR T cells conferred robust protection against T-ALL progression and significantly improved survival in mice. Overall, we found that CD147 is a potential antigen target of CAR T cell therapy for T-ALL.


Assuntos
Basigina , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Basigina/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T
13.
Zhongguo Zhong Yao Za Zhi ; 47(6): 1677-1686, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-35347967

RESUMO

Based on network pharmacology, the mechanism of Polygoni Cuspidati Rhizoma et Radix-Ligustri Lucidi Fructus(PL) combination against acute gouty arthritis(AGA) was explored and preliminarily verified by animal experiment. The chemical components and corresponding targets of PL were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The active components with oral bioavailability(OB)≥30% and drug-likeness(DL)≥0.18 were screened based on literature, and the related protein targets were collected. Then the protein targets were standardized with the help of UniProt database. The AGA-related targets were searched from GeneCards, NCBI, and DrugBank. The common targets of the disease and the medicinals were yielded by FunRich V3, and the protein-protein interaction(PPI) network was constructed to screen the key targets, followed by Gene Ontology(GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis of the key targets. Afterwards, some of the key targets were verified by sodium urate crystal-induced AGA mouse model. A total of 25 active components and 287 targets of PL, 811 targets of AGA, and 88 common targets were screened out. PPI network analysis showed that tumor necrosis factor(TNF), interleukin-6(IL-6), and interleukin-1ß(IL-1ß) may be the core targets of PL in the treatment of AGA. The key targets were mainly involved in 566 GO terms(P<0.05), including multiple biological processes such as inflammatory response and immune response. Moreover, they were related to 116 KEGG pathways and these pathways were involved in inflammation and immunity, mainly including NOD-like receptor signaling pathway and TNF signaling pathway. Animal experiment confirmed that PL can alleviate ankle swelling, improve abnormal gait, and down-regulate the protein expression of TNF-α, IL-6, and IL-1ß in AGA mice, indicating that PL can treat AGA through TNF-α, IL-6, and IL-1ß and the feasibility of network pharmacology to predict drug targets. This study preliminarily discussed the key targets and biological signaling pathways involved in the treatment of AGA with PL combination, which reflected the multi-pathway and multi-target action characteristics of Chinese medicine. Moreover, this study laid a scientific basis for research on the treatment of AGA with PL combination, as well as the mechanism of action.


Assuntos
Artrite Gotosa , Medicamentos de Ervas Chinesas , Ligustrum , Animais , Artrite Gotosa/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Camundongos , Farmacologia em Rede , Rizoma
14.
Front Oncol ; 12: 794034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311105

RESUMO

Pyroptosis is an inflammatory form of programmed cell death that is involved in various cancers, including hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) were recently verified as crucial mediators in the regulation of pyroptosis. However, the role of pyroptosis-related lncRNAs in HCC and their associations with prognosis have not been reported. In this study, we constructed a prognostic signature based on pyroptosis-related differentially expressed lncRNAs in HCC. A co-expression network of pyroptosis-related mRNAs-lncRNAs was constructed based on HCC data from The Cancer Genome Atlas. Cox regression analyses were performed to construct a pyroptosis-related lncRNA signature (PRlncSig) in a training cohort, which was subsequently validated in a testing cohort and a combination of the two cohorts. Kaplan-Meier analyses revealed that patients in the high-risk group had poorer survival times. Receiver operating characteristic curve and principal component analyses further verified the accuracy of the PRlncSig model. Besides, the external cohort validation confirmed the robustness of PRlncSig. Furthermore, a nomogram based on the PRlncSig score and clinical characteristics was established and shown to have robust prediction ability. In addition, gene set enrichment analysis revealed that the RNA degradation, the cell cycle, the WNT signaling pathway, and numerous immune processes were significantly enriched in the high-risk group compared to the low-risk group. Moreover, the immune cell subpopulations, the expression of immune checkpoint genes, and response to chemotherapy and immunotherapy differed significantly between the high- and low-risk groups. Finally, the expression levels of the five lncRNAs in the signature were validated by quantitative real-time PCR. In summary, our PRlncSig model shows significant predictive value with respect to prognosis of HCC patients and could provide clinical guidance for individualized immunotherapy.

15.
Materials (Basel) ; 15(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35160774

RESUMO

To improve the seismic performance of steel frame buildings in rural areas, an energy-dissipating composite wall (EDCW) assembled from concrete-filled steel tubular columns and concrete sheet walls was designed. Cyclic loading tests were simulated using the finite element method (FEM) to analyse the seismic performance of the EDCW. The reliability of numerical modelling and analysis was verified by comparing the hysteretic curves obtained by the finite element model with those obtained by previous experiments. The EDCW was designed for installation in a two-storey steel frame, and the FEM was used to determine the seismic performance of the steel frame, including the deformation and failure characteristics, hysteresis curves, and skeleton curves. The numerical simulation results showed that the EDCW dissipated most of the seismic energy and thus substantially improved the seismic performance of the frame. The seismic performances of 16 frames were compared to investigate the effects of the span ratio of the steel frame to the EDCW, the installation location of the EDCW, and the stiffness of the steel frame on the seismic performance of the frame.

16.
Cancer Lett ; 530: 142-155, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077803

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) usually presents infrequent infiltration of T lymphocytes. The known immune-checkpoint inhibitors to date focus on activating T cells and manifest limited effectiveness in PDAC. SIGLEC15 was identified as a novel tumor-associated macrophage (TAM)-related immune-checkpoint in other cancer types, while its immunosuppressive role and clinical significance remained unclear in PDAC. In our study, SIGLEC15 presented immunosuppressive relevance in PDAC via bioinformatic analysis and expressed on TAM and PDAC cells. SIGLEC15+ TAM, rather than SIGLEC15+ PDAC cells or SIGLEC15- TAM, correlated with poor prognosis and immunosuppressive microenvironment in the PDAC microarray cohort. Compared with SIGLEC15- TAM, SIGLEC15+ TAM presented an M2-like phenotype that could be modulated by SIGLEC15 in a tumor cell-dependent manner. In mechanism, SIGLEC15 interacted with PDAC-expressed sialic acid, preferentially α-2, 3 sialic acids, to stimulate SYK phosphorylation in TAM, which further promoted its immunoregulatory cytokines and chemokines production. In vivo, SIGLEC15+ TAM also presented an M2-like phenotype, accelerated tumor growth, and facilitated immunosuppressive microenvironment, which was greatly abolished by SYK inhibitor. Our study highlighted a novel M2-promoting function of SIGLEC15 and strongly suggested SIGLEC15 as a potential immunotherapeutic target for PDAC.


Assuntos
Imunoglobulinas/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Macrófagos Associados a Tumor/patologia , Animais , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Citocinas/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Terapia de Imunossupressão/métodos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/patologia , Células THP-1 , Microambiente Tumoral/genética , Neoplasias Pancreáticas
17.
J Nucl Med ; 63(4): 556-559, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34475235

RESUMO

This prospective nonrandomized, multicenter clinical trial was performed to investigate the efficacy and safety of 131I-labeled metuximab in adjuvant treatment of unresectable hepatocellular carcinoma. Methods: Patients were assigned to treatment with transcatheter arterial chemoembolization (TACE) combined with 131I-metuximab or TACE alone. The primary outcome was overall tumor recurrence. The secondary outcomes were safety and overall survival. Results: The median time to tumor recurrence was 6 mo in the TACE + 131I-metuximab group (n = 160) and 3 mo in the TACE group (n = 160) (hazard ratio, 0.55; 95% CI, 0.43-0.70; P < 0.001). The median overall survival was 28 mo in the TACE + 131I-metuximab group and 19 mo in the TACE group (hazard ratio, 0.62; 95% CI, 0.47-0.82; P = 0.001). Conclusion: TACE + 131I-metuximab showed a greater antirecurrence benefit, significantly improved the 5-y survival of patients with advanced hepatocellular carcinoma, and was well tolerated by patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Anticorpos Monoclonais , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Terapia Combinada , Artéria Hepática/patologia , Humanos , Radioisótopos do Iodo , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia , Estudos Prospectivos , Resultado do Tratamento
18.
Front Pharmacol ; 12: 719823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744713

RESUMO

Background: Phillyrin (Phi) is the main polyphenolic compound found in Forsythia suspensa. Recent studies have revealed that Phi has potent antioxidative and anti-inflammatory effects. However, whether Phi could relieve blood-brain barrier (BBB) damage following traumatic brain injury (TBI) remains unknown. Materials and Methods: Lipopolysaccharide (LPS) was used to activate primary microglia, which were then treated with different doses of Phi or the peroxisome proliferator-activated receptor-gamma (PPARγ) antagonist (GW9662). CCK-8 assay was used for evaluating cell viability, and the cytokines (including IL-1ß, IL-6, TNFα, IL-4, IL-10, and TGFß), microglial phenotypic markers (iNOS, COX2, and CD86 for "M1" polarization; Arg1, Ym1, and CD206 for "M2" polarization), PPARγ, and NF-κB were determined by RT-PCR, Western blot, or cellular immunofluorescence. Primary cultured mouse brain microvascular endothelial cells (BMECs) were stimulated by the condition medium (CM) from microglia. The cell viability, angiogenesis, and tight junction of BMECs were determined via CCK-8 assay, tube formation assay, and Western blot (for detecting MMP3, MMP9, ZO1, claudin-5, and occludin). Furthermore, the mouse TBI model was constructed and treated with Phi and/or GW9662. The BBB integrity was evaluated by H&E staining, Evans blue staining, and tissue immunofluorescence. Results: Phi markedly restrained the pro-inflammatory ("M1" state) cytokines and promoted anti-inflammatory ("M2" polarization) cytokines in LPS-mediated microglia. Phi mitigated "M1" polarization and promoted "M2" polarization of microglia via enhancing PPARγ and inhibiting the NF-κB pathway. The PPARγ antagonist GW9662 significantly repressed Phi-mediated anti-inflammatory effects. Meanwhile, Phi enhanced the viability, tube formation ability, and cell junction of BMECs. In the TBI mouse model, Phi promoted "M2" polarization, whereas it repressed the "M1" polarization of microglia. In addition, Phi reduced TBI-mediated BBB damage. However, the protective effects of Phi were reversed mainly by GW9662 treatment. Conclusion: Phi prevents BBB damage via inhibiting the neuroinflammation of microglia through the PPARγ/NF-κB pathway, which provides a potential therapeutic drug against TBI.

19.
Bioorg Med Chem ; 51: 116497, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794002

RESUMO

Antibody-drug conjugates (ADCs) have emerging as efficient agents to target deliver cytotoxic drugs and reduce their off-target side effects. Triptolide has attracted attention to be used in ADC development. Herein, three rationally designed triptolide drug-linkers have been synthesized for use in site-specific construction of ADCs. Carbamates that were supposed to be more stable than carbonates were introduced to attach triptolide to the linkers. PEG and discrete PEG chains were incorporated to improve the hydrophilicity of drug-linkers. The ADCs were finally site-specifically prepared by conjugation of the drug-linkers to trastuzumab through disulfide re-bridging approach. The preliminary anti-tumor activities of these ADCs were evaluated and they displayed high potencies against HER2-targeted cancer in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Imunoconjugados/farmacologia , Fenantrenos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/química , Compostos de Epóxi/farmacologia , Humanos , Imunoconjugados/química , Masculino , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Estrutura Molecular , Fenantrenos/química , Relação Estrutura-Atividade
20.
Ann Acad Med Singap ; 50(6): 456-466, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34195752

RESUMO

INTRODUCTION: Melanomas in Asians have different clinicopathological characteristics and prognosis from melanomas in Caucasians. This study reviewed the epidemiology and treatment outcomes of cutaneous melanoma diagnosed at a tertiary referral dermatology centre in Singapore, which has a multiracial population. The study also determined whether Asians had comparable relapse-free and overall survival periods to Caucasians in Singapore. METHOD: This is a retrospective review of cutaneous melanoma cases in our centre between 1996 and 2015. RESULTS: Sixty-two cases of melanoma were diagnosed in 61 patients: 72.6% occurred in Chinese, 19.4% in Caucasians and 3.2% in Indians, with an over-representation of Caucasians. Superficial spreading melanoma, acral lentiginous melanoma and nodular melanoma comprised 37.1%, 35.5% and 22.6% of the cases, respectively. The median time interval to diagnosis was longer in Asians than Caucasians; median Breslow's thickness in Asians were significantly thicker than in Caucasians (2.6mm versus 0.9mm, P=0.018) and Asians tend to present at a later stage. The mortality rates for Asians and Caucasians were 52% and 0%, respectively. CONCLUSION: More physician and patient education on skin cancer awareness is needed in our Asian-predominant population for better outcomes.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/epidemiologia , Melanoma/terapia , Prognóstico , Estudos Retrospectivos , Singapura/epidemiologia , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/terapia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA