Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 7010-7019, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345334

RESUMO

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlxGa1-xN. It is intriguing to find that the NPR in AlxGa1-xN is significantly enhanced compared to the parent materials of GaN and AlN. The underlying mechanism mainly originates from a counter-intuitive increase of the bond angle θ. We further study the microscopic origin of the anomalies by electron orbital analysis as well as electron localization functions. It is revealed that the distribution and movement of electrons change with the applied strain, providing a fundamental view on the effect of strain on lattice parameters and the NPR. The physical origin as revealed in this study deepens the understanding of the NPR and shed light on the future design of modern nanoscale electromechanical devices with fantastic functions based on the auxetic nanomaterials and nanostructures.

2.
Nanotechnology ; 32(13): 135401, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33296877

RESUMO

Alloying is a widely employed approach for tuning properties of materials, especially for thermal conductivity which plays a key role in the working liability of electronic devices and the energy conversion efficiency of thermoelectric devices. Commonly, the thermal conductivity of an alloy is acknowledged to be the smallest compared to the parent materials. However, the findings in this study bring some different points of view on the modulation of thermal transport by alloying. The thermal transport properties of monolayer GaN, AlN, and their alloys of Ga x Al1-x N are comparatively investigated by solving the Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of Ga0.25Al0.75N alloy (29.57 Wm-1 K-1) and Ga0.5Al0.5N alloy (21.49 Wm-1 K-1) are found exceptionally high to be between AlN (74.42 Wm-1 K-1) and GaN (14.92 Wm-1 K-1), which violates the traditional knowledge that alloying usually lowers thermal conductivity. The mechanism resides in that, the existence of Al atoms reduces the difference in atomic radius and masses of the Ga0.25Al0.75N alloy, which also induces an isolated optical phonon branch around 18 THz. As a result, the scattering phase space of Ga0.25Al0.75N is largely suppressed compared to GaN. The microscopic analysis from the orbital projected electronic density of states and the electron localization function further provides insight that the alloying process weakens the polarization of bonding in Ga0.25Al0.75N alloy and leads to the increased thermal conductivity. The exceptionally high thermal conductivity of the Ga x Al1-x N alloys and the underlying mechanism as revealed in this study would bring valuable insight for the future research of materials with applications in high-performance thermal management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA