Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39133896

RESUMO

Hydrogen sulphide (H2S) is required for optimal establishment of soybean (Glycine max)-Sinorhizobium fredii symbiotic interaction, yet its role in regulating the nitrogen fixation-senescence transition remains poorly understood. A S. fredii cystathionine γ-lyase (CSE) mutant deficient in H2S synthesis showed early nodule senescence characterized by reduced nitrogenase activity, structural changes in nodule cells, and accelerated bacteroid death. In parallel, the CSE mutant facilitated the generation of reactive oxygen species (ROS) and elicited antioxidant responses. We observed that H2S-mediated persulfidation of cysteine C31/C80 in ascorbate peroxidase (APX) and C32 in APX2 modulated enzyme activity, thereby participating in hydrogen peroxide (H2O2) detoxification and delaying nodule senescence. Comparative transcriptomic analysis revealed a significant up-regulation of GmMYB128, an MYB transcription factor (TF), in the CSE mutant nodules. Functional analysis through overexpression and RNAi lines of GmMYB128 demonstrated its role as a positive regulator in nodule senescence. MYB128-OE inoculated with the CSE mutant strain exhibited a reduction in nitrogenase activity and a significant increase in DD15 expression, both of which were mitigated by NaHS addition. Changes at the protein level encompassed the activation of plant defenses alongside turnover in carbohydrates and amino acids. Our results suggest that H2S plays an important role in maintaining efficient symbiosis and preventing premature senescence of soybean nodules.

2.
ISME J ; 17(8): 1257-1266, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253970

RESUMO

Atmospheric trace gases, such as H2 and CO, are important energy sources for microbial growth and maintenance in various ecosystems, especially in arid deserts with little organic substrate. Nonetheless, the impact of soil organic C availability on microbial trace gas oxidation and the underlying mechanisms are unclear at the community level. This study investigated the energy and life-history strategies of soil microbiomes along an organic C gradient inside and out of Hedysarum scoparium islands dispersed in the Mu Us Desert, China. Metagenomic analysis showed that with increasing organic C availability from bare areas into "fertile islands", the abundance of trace gas oxidizers (TGOs) decreased, but that of trace gas nonoxidizers (TGNOs) increased. The variation in their abundance was more related to labile/soluble organic C levels than to stable/insoluble organic C levels. The consumption rates of H2 and CO confirmed that organic C addition, especially soluble organic C addition, inhibited microbial trace gas oxidation. Moreover, microorganisms with distinct energy-acquiring strategies showed different life-history traits. The TGOs had lower 16 S rRNA operon copy numbers, lower predicted maximum growth rates and higher proportions of labile C degradation genes, implying the prevalence of oligotrophs. In contrast, copiotrophs were prevalent in the TGNOs. These results revealed a mechanism for the microbial community to adapt to the highly heterogeneous distribution of C resources by adjusting the abundances of taxa with distinct energy and life-history strategies, which would further affect trace gas consumption and C turnover in desert ecosystems.


Assuntos
Carbono , Ecossistema , Carbono/análise , Gases/análise , Solo/química , Microbiologia do Solo
3.
Plant Cell Environ ; 46(3): 1004-1017, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36515398

RESUMO

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in immune response in animals. However, the role of MIFs in plants such as Medicago truncatula, particularly in symbiotic nitrogen fixation, remains unclear. An investigation of M. truncatula-Sinorhizobium meliloti symbiosis revealed that MtMIF3 was mainly expressed in the nitrogen-fixing zone of the nodules. Silencing MtMIF3 using RNA interference (Ri) technology resulted in increased nodule numbers but higher levels of bacteroid degradation in the infected cells of the nitrogen-fixing zone, suggesting that premature aging was induced in MtMIF3-Ri nodules. In agreement with this conclusion, the activities of nitrogenase, superoxide dismutase and catalase were lower than those in controls, but cysteine proteinase activity was increased in nodulated roots at 28 days postinoculation. In contrast, the overexpression of MtMIF3 inhibited nodule senescence. MtMIF3 is localized in the plasma membrane, nucleus, and cytoplasm, where it interacts with methionine sulfoxide reductase B (MsrB), which is also localized in the chloroplasts of tobacco leaf cells. Taken together, these results suggest that MtMIF3 prevents premature nodule aging and protects against oxidation by interacting with MtMsrB.


Assuntos
Senilidade Prematura , Fatores Inibidores da Migração de Macrófagos , Medicago truncatula , Nódulos Radiculares de Plantas/metabolismo , Medicago truncatula/fisiologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Senilidade Prematura/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Simbiose/fisiologia
4.
J Exp Bot ; 71(22): 7347-7363, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865563

RESUMO

Nodulation outer proteins secreted via type 3 secretion systems are involved in the process of symbiosis between legume plants and rhizobia. To study the function of NopT in symbiosis, we mutated nopT in Mesorhizobium amphore CCNWGS0123 (GS0123), which can nodulate black locust (Robinia pseudoacacia). The nopT mutant induced higher levels of jasmonic acid, salicylic acid, and hydrogen peroxide accumulation in the roots of R. pseudoacacia compared with wild-type GS0123. The ΔnopT mutant induced higher disease-resistant gene expression 72 hours post-inoculation (hpi), whereas GS0123 induced higher disease-resistant gene expression earlier, at 36 hpi. Compared with the nopT mutant, GS0123 induced the up-regulation of most genes at 36 hpi and the down-regulation of most genes at 72 hpi. Proteolytically active NopT_GS0123 induced hypersensitive responses when expressed transiently in tobacco leaves (Nicotiana benthamiana). Two NopT_GS0123 targets in R. pseudoacacia were identified, ATP-citrate synthase alpha chain protein 2 and hypersensitive-induced response protein. Their interactions with NopT_GS0123 triggered resistance by the plant immune system. In conclusion, NopT_GS0123 inhibited the host plant immune system and had minimal effect on nodulation in R. pseudoacacia. Our results reveal the underlying molecular mechanism of NopT function in plant-symbiont interactions.


Assuntos
Mesorhizobium , Rhizobium , Robinia , Raízes de Plantas , Robinia/genética , Simbiose
5.
BMC Plant Biol ; 20(1): 383, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819279

RESUMO

BACKGROUND: Hydrogen sulphide (H2S) is involved in regulating physiological processes in plants. We investigated how H2S ameliorates iron (Fe) deficiency in soybean (Glycine max L.) seedlings. Multidisciplinary approaches including physiological, biochemical and molecular, and transcriptome methods were used to investigate the H2S role in regulating Fe availability in soybean seedlings. RESULTS: Our results showed that H2S completely prevented leaf interveinal chlorosis and caused an increase in soybean seedling biomass under Fe deficiency conditions. Moreover, H2S decreased the amount of root-bound apoplastic Fe and increased the Fe content in leaves and roots by regulating the ferric-chelate reductase (FCR) activities and Fe homeostasis- and sulphur metabolism-related gene expression levels, thereby promoting photosynthesis in soybean seedlings. In addition, H2S changed the plant hormone concentrations by modulating plant hormone-related gene expression abundances in soybean seedlings grown in Fe-deficient solution. Furthermore, organic acid biosynthesis and related genes expression also played a vital role in modulating the H2S-mediated alleviation of Fe deficiency in soybean seedlings. CONCLUSION: Our results indicated that Fe deficiency was alleviated by H2S through enhancement of Fe acquisition and assimilation, thereby regulating plant hormones and organic acid synthesis in plants.


Assuntos
Glycine max/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ferro/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Biomassa , Clorofila/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase/genética , Fotossíntese/genética , Fotossíntese/fisiologia , Doenças das Plantas/genética , Raízes de Plantas/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
6.
Planta ; 250(6): 1897-1910, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31485773

RESUMO

MAIN CONCLUSION: A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Nodulação/genética , Subunidades Ribossômicas Maiores/genética , Robinia/genética , Clonagem Molecular , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Subunidades Ribossômicas Maiores/fisiologia , Robinia/crescimento & desenvolvimento , Robinia/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma
7.
Int J Syst Evol Microbiol ; 69(7): 2049-2056, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31091180

RESUMO

Two Gram-stain-negative, rod-shaped bacterial strains (C5T and C16), isolated from root nodules of Phaseolus vulgaris L. in Jiangxi Province, PR China, were characterized by using a polyphasic taxonomical approach. The phylogenetic analysis of the 16S rRNA gene and three concatenated housekeeping genes (recA-glnII-atpD) revealed that C5T and C16 were members of the genus Rhizobium, yet were distinct from known species. The case for strain C5T representing a novel species was supported by genomic results. Pairwise digital DNA-DNA hybridization and average nucleotide identity values were much lower than the proposed and generally accepted species boundaries. The genome-based phylogenetic tree reconstructed by using the up-to-date bacterial core gene set consisting of 92 genes showed that the strains formed a monophyletic branch, further supporting this result. The symbiotic genes of nodC and nifH were identified in both strains; each could nodulate Phaseolus vulgaris and Glycine max but not Leucaena leucocephala, Pisum sativum or Medicago sativa plants. Major cellular fatty acids of C5T were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 58.8 %), C18 : 1 ω7c 11-methyl (14.2 %) and C18 : 0 (8.1 %). The DNA G+C content of C5T was 61.4 mol%. Based on these genomic, chemotaxonomic and phenotypic characteristics, we propose a novel species: Rhizobium chutanense sp. nov. The type strain is C5T (=CCTCC AB 2018143T=LMG 30777T).


Assuntos
Phaseolus/microbiologia , Filogenia , Rhizobium/classificação , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Medicago sativa , Hibridização de Ácido Nucleico , Pisum sativum , RNA Ribossômico 16S/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Glycine max , Simbiose
8.
Sci Total Environ ; 656: 1346-1357, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625663

RESUMO

Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. However, knowledge of the molecular mechanisms, especially the microstructure and global transcriptional profiling, of the symbiosis process under heavy metal contamination is limited. In this study, a heavy metal-tolerant legume, Medicago lupulina, was treated with different concentrations of copper (Cu). The results showed that the early infection process was inhibited and the nodule ultrastructure was changed under 200 mg kg-1 Cu stress. Most infection threads (ITs) were prevented from entering the nodule cells, and few rhizobia were released into the host cells, in which thickening of the plant cell wall and IT wall was observed, demonstrating that rhizobial invasion was inhibited under Cu stress. RNA-seq analysis indicated that a strong shift in gene expression occurred (3257 differentially expressed genes, DEGs). The most pronounced effect was the upregulation of a set of 71 of 73 DEGs for nodule-specific cysteine-rich peptides, which have been shown to control the terminal differentiation of rhizobia in the nodules and to have antimicrobial activity. Various genes for metal transport, chelation binding and antioxidant defence were regulated. In particular, the DEGs for Cu trafficking and detoxification were induced during nodule formation. The DEGs for ethylene (ET) biosynthesis and signalling were also differentially expressed during nodulation, suggesting that the inhibition of nodulation by Cu occurred partially through ET signalling. Furthermore, the genes related to the cell wall were mostly upregulated and most likely involved in cell wall thickening. These findings provide an integrated understanding of the effects of Cu on legume nodule symbiosis at the molecular and phenotypic levels.


Assuntos
Cobre/efeitos adversos , Medicago/efeitos dos fármacos , Bactérias Fixadoras de Nitrogênio/fisiologia , Fenótipo , Poluentes do Solo/efeitos adversos , Simbiose/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago/genética , Medicago/fisiologia , Medicago/ultraestrutura , Microscopia Eletrônica de Transmissão , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Nódulos Radiculares de Plantas/ultraestrutura
9.
Ecotoxicol Environ Saf ; 162: 312-323, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30005404

RESUMO

Despite numerous reports that legume-rhizobium symbiosis alleviates Cu stress in plants, the possible roles of legume-rhizobium symbiosis and the regulatory mechanisms in counteracting Cu toxicity remain unclear. Here, Sinorhizobium meliloti CCNWSX0020 was used for analyzing the effects of rhizobium inoculation on plant growth in Medicago sativa seedlings under Cu stress. Our results showed that rhizobium inoculation alleviated Cu-induced growth inhibition, and increased nitrogen concentration in M. sativa seedlings. Moreover, the total amount of Cu uptake in inoculated plants was significantly increased compared with non-inoculated plants, and the increase in the roots was much higher than that in the shoots, thus decreasing the transfer coefficient and promoting Cu phytostabilization. Cu stress induced lipid peroxidation and reactive oxygen species production, but rhizobium inoculation reduced these components' accumulation through altering antioxidant enzyme activities and regulating ascorbate-glutathione cycles. Furthermore, legume-rhizobium symbiosis regulated the gene expression involved in antioxidant responses, phytochelatin (PC) biosynthesis, and metallothionein biosynthesis in M. sativa seedlings under Cu stress. Our results demonstrate that rhizobium inoculation enhanced Cu tolerance by affecting Cu uptake, regulating antioxidant enzyme activities and the ascorbate-glutathione cycle, and influencing PC biosynthesis-related gene expression in M. sativa. The results provide an efficient strategy for phytoremediation of Cu-contaminated soils.


Assuntos
Cobre/toxicidade , Medicago sativa/efeitos dos fármacos , Rhizobium/metabolismo , Poluentes do Solo/toxicidade , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Metalotioneína/metabolismo , Fitoquelatinas/biossíntese , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Simbiose
10.
PeerJ ; 6: e5202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018859

RESUMO

Sinorhizobium meliloti CCNWSX0020, isolated from root nodules of Medicago lupulina growing in gold mine tailings in the northwest of China, displayed multiple heavy metal resistance and growth promotion of M. lupulina. In our previous work, the expression level of dmeR and dmeF genes were induced by Cu2+ through comparative transcriptome approach. Based on protein analysis, the dmeF encoded for a protein which showed a 37% similarity to the cation transporter DmeF of Cupriavidus metallidurans, whereas dmeR encoded transcriptional regulator which was highly homologous with DmeR belonging to RcnR/CsoR family metal-responsive transcriptional regulator. In addition to copper, quantitative real-time PCR analysis showed that dmeR and dmeF were also induced by nickel and cobalt. To investigate the functions of dmeR and dmeF in S. meliloti CCNWSX0020, the dmeR and dmeF deletion mutants were constructed. The dmeF mutant was more sensitive to Co2 + and Ni2 + than the wild type strain. Pot experiments were carried out to determine whether the growth of M. lupulina was affected when the dmeF gene was knocked out in the presence of nickel or cobalt. Results indicated that the nodule number of the host plant inoculated with the dmeF deletion mutant was significantly less than the S. meliloti CCNWSX0020 wild-type in the presence of Co2 + or Ni2 +. However, when standardized by nodule fresh weight, the nitrogenase activities of nodules infected by the dmeF deletion mutant was similar to nitrogenase activity of the wild type nodule.

11.
Int J Syst Evol Microbiol ; 68(4): 1300-1306, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29485397

RESUMO

A novel endophytic bacterium, designated strain HZ10T, was isolated from root nodules of Robinia pseudoacacia growing in a lead-zinc mine in Mianxian County, Shaanxi Province, China. The bacterium was Gram-stain-negative, aerobic, motile, slightly curved- and rod-shaped, methyl red-negative, catalase-positive, and did not produce H2S. Strain HZ10T grew at 4-45 °C (optimum, 25-30 °C), pH 5-9 (optimum, pH 7-8) and 0-1 % (w/v) NaCl. The major fatty acids were identified as C16 : 0, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), and the quinone type was Q-8. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The DNA G+C content of the genomic DNA was 64.9 mol% based on the whole genome sequence. According to the 16S rRNA gene sequence analysis, the closest phylogenetic relative to strain HZ10T is Herbaspirillum chlorophenolicum CPW301T (98.72 % sequence identity). Genome relatedness of the type strains H. chlorophenolicum CPW301T, Herbaspirillum seropedicae Z67T and Herbaspirillum aquaticum IEH 4430T, was quantified by using the average nucleotide identity (86.9-88.0 %) and a genome-to-genome distance analysis (26.6 %-29.3 %), with both strongly supporting the notion that strain HZ10T belongs to the genus Herbaspirillum as a novel species. Based on the results from phylogenetic, chemotaxonomic and physiological analyses, strain HZ10T represents a novel Herbaspirillum species, for which the name Herbaspirillum robiniae sp. nov. is proposed. The type strain is HZ10T (=JCM 31754T=CCTCC AB 2014352T).


Assuntos
Herbaspirillum/citologia , Filogenia , Robinia/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Herbaspirillum/genética , Herbaspirillum/isolamento & purificação , Chumbo , Mineração , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Zinco
12.
Int J Syst Evol Microbiol ; 68(1): 87-92, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29095138

RESUMO

A novel endophytic bacterium, designated strain HZ7T, was isolated from the root nodules of Robinia pseudoacacia growing in a lead-zinc mine in Mianxian County, Shaanxi Province, China. Cells were Gram-reaction-negative, aerobic, motile, rod-shaped, methyl-red-negative, catalase-positive, positive for chitosan-degrading activity and did not produce H2S. Strain HZ7T grew at 4-45 °C (optimum 25-30 °C), at pH 5-9 (optimum pH 7-8) and with 0-1 % (w/v) NaCl. The quinone type was ubiquinone 8 (UQ-8). The major fatty acids were identified as C16 : 0, C17 : 0 cyclo and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c). The G+C content of the genomic DNA was 68.5 mol% by whole genome sequencing. According to 16S rRNA gene sequence analysis, the closest phylogenetic relative was Mitsuaria chitosanitabida 3001T (99.05 % similarity). Genome relatedness was computed using average nucleotide identity and genome-to-genome distance analysis, both of which strongly supported strain HZ7Tas belonging to the genus Mitsuaria as a representative of a novel species. On the basis of phylogenetic analysis, chemotaxonomic data and physiological characteristics, strain HZ7T represents a novel species of the genus Mitsuaria, for which the name Mitsuaria noduli sp. nov. is proposed. The type strain is HZ7T (=JCM 31671T=CCTCC AB 2014353T).


Assuntos
Burkholderiales/classificação , Mineração , Filogenia , Robinia/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiales/genética , Burkholderiales/isolamento & purificação , China , DNA Bacteriano/genética , Ácidos Graxos/química , Chumbo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Zinco
13.
Mol Ecol ; 26(19): 5305-5317, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28665016

RESUMO

Revealing the biogeographies and ecologies of rare and abundant microorganisms is crucial to understand ecosystem diversity and function. In this study, we investigated the biogeographic assemblies and ecological diversity patterns of rare and abundant bacteria in long-term oil-contaminated soils at intervals of 46-360 km by performing high-throughput sequencing of 16S rRNA genes. The results clearly revealed distinct distribution patterns for rare and abundant bacteria in soil samples. Rare taxa were unevenly distributed; however, abundant taxa were ubiquitous across all samples. Both rare and abundant subcommunities showed significant distance-decay relationships, and their assemblies were driven by different factors. The rare subcommunity primarily exhibited a spatially structured distribution (i.e., stochastic processes), while edaphic factors (i.e., deterministic processes) largely contributed to the structure of the abundant subcommunity. A network analysis revealed closer relationships between abundant bacteria and their heightened influence on other co-occurrences in the community compared with rare species. In conclusion, rare microbial taxa may play potential roles in maintaining ecosystem diversity, although they do not appear to be central to microbial networks. Abundant microbes are vital for microbial co-occurrences in oil-contaminated soils, and high relative abundance and ubiquitous distribution suggest potential roles in the degradation of organic pollutants.


Assuntos
Bactérias/classificação , Biodiversidade , Microbiota , Poluição por Petróleo , Microbiologia do Solo , China , DNA Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Poluentes do Solo
14.
Nat Commun ; 8: 14888, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28348410

RESUMO

Iron sequestration by host proteins contributes to the defence against bacterial pathogens, which need iron for their metabolism and virulence. A Pseudomonas aeruginosa mutant lacking all three known iron acquisition systems retains the ability to grow in media containing iron chelators, suggesting the presence of additional pathways involved in iron uptake. Here we screen P. aeruginosa mutants defective in growth in iron-depleted media and find that gene PA2374, proximal to the type VI secretion system H3 (H3-T6SS), functions synergistically with known iron acquisition systems. PA2374 (which we have renamed TseF) appears to be secreted by H3-T6SS and is incorporated into outer membrane vesicles (OMVs) by directly interacting with the iron-binding Pseudomonas quinolone signal (PQS), a cell-cell signalling compound. TseF facilitates the delivery of OMV-associated iron to bacterial cells by engaging the Fe(III)-pyochelin receptor FptA and the porin OprF. Our results reveal links between type VI secretion, cell-cell signalling and classic siderophore receptors for iron acquisition in P. aeruginosa.


Assuntos
Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos , Membrana Celular/metabolismo , Ferro/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Vesículas Transportadoras/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/química , Modelos Biológicos , Mutação/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Especificidade por Substrato
15.
Antioxid Redox Signal ; 26(1): 1-14, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324811

RESUMO

AIMS: Eukaryotic typical 2-cysteine (Cys) peroxiredoxins (Prxs) are multifunctional proteins subjected to complex regulation and play important roles in oxidative stress resistance, hydrogen peroxide (H2O2) signaling modulation, aging, and cancer, but the information on the biochemical functions and regulation mechanisms of prokaryotic atypical 2-Cys Prxs is largely lacking. RESULTS: In this study, we show that at low peroxide concentrations, the atypical 2-Cys Prx in Corynebacterium glutamicum (CgPrx) mainly exists as monomers and displays thioredoxin (Trx)-dependent peroxidase activity. Moderate oxidative stress causes reversible S-mycothiolation of the H2O2-sensing Cys63 residue, which keeps CgPrx exclusively in dimer form with neither peroxidase nor chaperone activity. Then, the increased levels of H2O2 could act as a messenger to oxidize the redox-sensitive regulator hydrogen peroxide-inducible gene activator, leading to activation of expression of the more efficient mycothiol peroxidase and catalase to eliminate excessive peroxide. If oxidative stress is too severe, the H2O2-sensing Cys63 becomes hyperoxidized to sulfonic acid, which irreversibly inactivates the peroxidase activity, and most of CgPrx will be converted to multimeric chaperones for salvage of damaged proteins. INNOVATION: We demonstrate for the first time that atypical 2-Cys CgPrx acts as both a Trx-dependent peroxidase and a molecular chaperone and plays a regulatory role in modulating the peroxide-mediated signaling cascades. CONCLUSION: These results reveal that CgPrx functions as a multifunctional protein crucial for adapting appropriate responses to different levels of oxidative challenge in C. glutamicum. Antioxid. Redox Signal. 26, 1-14.


Assuntos
Corynebacterium glutamicum/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Corynebacterium glutamicum/efeitos dos fármacos , Corynebacterium glutamicum/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Regulação Bacteriana da Expressão Gênica , Peróxido de Hidrogênio/farmacologia , Chaperonas Moleculares/metabolismo , Oxirredução , Estresse Oxidativo , Peroxidase/metabolismo , Peroxirredoxinas/química , Multimerização Proteica/efeitos dos fármacos , Transdução de Sinais
16.
Sci Rep ; 6: 35155, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725778

RESUMO

Random mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon repressor), constituted a csoR-cueA divergon which plays a crucial role in Cu homeostasis. Deletion of cueA decreased the Cu tolerance of cells, and complementation of this mutant restored comparable Cu resistance to that of the wild-type. Transcriptional and fusion expression analysis demonstrated that csoR-cueA divergon was up-regulated by both the monovalent Cu+ and divalent Zn2+/Cd2+, and negatively regulated by transcriptional repressor CsoR, via a bidirectional promoter. Deletion of csoR renders the cell hyper-resistant to Cu, Zn and Cd. Although predicted to encode a Cu transporting P-type ATPase (CueA), cueA also conferred resistance to zinc and cadmium; two putative N-MBDs (N-terminal metal binding domains) of CueA were required for the Cu/Zn/Cd tolerance. Moreover, cueA is needed for nodulation competitiveness of B. liaoningense in Cu rich conditions. Together, the results demonstrated a crucial role for the csoR-cueA divergon as a component of the multiple-metal resistance machinery in B. liaoningense.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/efeitos dos fármacos , Cádmio/metabolismo , Cobre/metabolismo , Farmacorresistência Bacteriana , Zinco/metabolismo , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Elementos de DNA Transponíveis , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutagênese Insercional , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
17.
Sci Rep ; 6: 29355, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378600

RESUMO

The Sinorhizobium meliloti (S. meliloti) strain CCNWSX0020 displayed tolerance to high levels exposures of multiple metals and growth promotion of legume plants grown in metal-contaminated soil. However, the mechanism of metal-resistant strain remains unknown. We used five P1B-ATPases deletions by designating as ∆copA1b, ∆fixI1, ∆copA3, ∆zntA and ∆nia, respectively to investigate the role of P1B-ATPases in heavy metal resistance of S. meliloti. The ∆copA1b and ∆zntA mutants were sensitive to zinc (Zn), cadmium (Cd) and lead (Pb) in different degree, whereas the other mutants had no significant influence on the metal resistance. Moreover, the expression of zntA was induced by Zn, Cd and Pb whereas copA1b was induced by copper (Cu) and silver (Ag). This two deletions could led to the increased intracellular concentrations of Zn, Pb and Cd, but not of Cu. Complementation of ∆copA1b and ∆zntA mutants showed a restoration of tolerance to Zn, Cd and Pb to a certain extent. Taken together, the results suggest an important role of copA1b and zntA in Zn homeostasis and Cd and Pb detoxification in S. meliloti CCNWSX0020.


Assuntos
Adenosina Trifosfatases/metabolismo , Sinorhizobium meliloti/crescimento & desenvolvimento , Poluentes do Solo/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Chumbo/metabolismo , Mutação , Filogenia , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/genética
18.
Plant Mol Biol ; 90(4-5): 389-402, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711634

RESUMO

Translationally controlled tumor protein (TCTP) is fundamental for the regulation of development and general growth in eukaryotes. Its multiple functions have been deduced from its involvement in several cell pathways, but its potential involvement in symbiotic nodulation of legumes cannot be suggested a priori. In the present work, we identified and characterized from the woody leguminous tree Robinia pseudoacacia a homolog of TCTP, Rpf41, which was up-regulated in the infected roots at 15 days post-inoculation but decreased in the matured nodules. Subcellular location assay showed that Rpf41 protein was located in the plasma membrane, cytoplasm, nucleus, and also maybe in cytoskeleton. Knockdown of Rpf41 via RNA interference (RNAi) resulted in the impaired development of both nodule and root hair. Compared with wild plants, the root and stem length, fresh weight and nodule number per plant was decreased dramatically in Rpf41 RNAi plants. The number of ITs or nodule primordia was also significantly reduced in the Rpf41 RNAi roots. The analyses of nodule ultrastructure showed that the infected cell development in Rpf41 RNAi nodules remained in zone II, which had fewer infected cells. Furthermore, the symbiosomes displayed noticeable shrinkage of bacteroid and peribacteroid space enlargement in the infected cells of Rpf41 RNAi nodules. In the deeper cell layers, a more remarkable aberration of the infected cell ultrastructure was observed, and electron-transparent lesions in the bacteroid cytoplasm were detected. These results identify TCTP as an important regulator of symbiotic nodulation in legume for the first time, and it may be involved in symbiotic cell differentiation and preventing premature aging of the young nodules in R. pseudoacacia.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Robinia/fisiologia , Clonagem Molecular , DNA Complementar/genética , DNA de Plantas/genética , Mesorhizobium/genética , Mesorhizobium/metabolismo , Filogenia , Proteínas de Plantas/genética , Nodulação/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Interferência de RNA , RNA de Plantas , Robinia/microbiologia
19.
Int J Syst Evol Microbiol ; 63(Pt 2): 490-495, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22505601

RESUMO

A gram-reaction-negative, rod-shaped, gliding and bright-yellow-pigmented bacterial strain, designated JCN-23(T), was isolated from a soil sample collected from an arid area in Gansu Province in north-west China, and characterized by using a polyphasic taxonomic approach. This isolate grew optimally at 30 °C and in the absence of NaCl. The only respiratory quinone was menaquinone-7 and the major cellular fatty acids were iso-C(15 : 0), iso-C(17 : 0) 3-OH, summed feature 9 (iso-C(17 : 1)ω9c and/or C(16 : 0) 10-methyl) and summed feature 3 (C(16 : 1)ω7c and/or C(16 : 1)ω6c). The only polyamine was homospermidine and the major polar lipid was phosphatidylethanolamine. The DNA G+C content was 47.1 mol%. Comparative 16S rRNA gene sequence analysis showed that strain JCN-23(T) was a member of the phylum Bacteroidetes, exhibiting the highest 16S rRNA gene sequence similarity to Flavitalea populi CCTCC AB 208255(T) (97.6 %). No other recognized bacterial species showed more than 93.4 % 16S rRNA gene sequence similarity to the novel isolate. DNA-DNA hybridization experiments showed a low level (26 %) of DNA-DNA relatedness between strain JCN-23(T) and F. populi CCTCC AB 208255(T). On the basis of the phenotypic and genotypic data and phylogenetic inference, strain JCN-23(T) is considered to represent a novel species of the genus Flavitalea, for which the name Flavitalea gansuensis sp. nov. is proposed. The type strain is JCN-23(T) ( = ACCC 05418(T) = KCTC 23071(T)). Emended descriptions of the genus Flavitalea and Flavitalea populi are also proposed.


Assuntos
Bacteroidetes/classificação , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/análise , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análise , Vitamina K 2/análogos & derivados , Vitamina K 2/análise
20.
Ecotoxicol Environ Saf ; 77: 7-17, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22001317

RESUMO

The bioaccumulation characteristics of Zn(2+) and Cd(2+) by a novel species, Streptomyces zinciresistens CCNWNQ0016(T), were investigated. S. zinciresistens accumulated Zn(2+) and Cd(2+) mainly on the cell wall followed by intracellular accumulation. The mycelium was deformed, aggregated and formed precipitate of zinc and cadmium on the cell surface. Electron dense granules were detected on the cell wall as well as within the cytoplasm. The amino, carboxyl, hydroxyl and carbonyl groups were responsible for the biosorption of Zn(2+) and Cd(2+). The Langmuir isotherm model fitted the experimental data of metals adsorption processes better than Freundlich isotherm model. Cu(2+) and Cr(3+) competed for adsorption sites on the cell surface with Zn(2+) and Cd(2+). 87.33% and 98.11% recovery of Zn(2+) and Cd(2+), respectively, could be obtained at pH≤2 from metal-loaded biomass of S. zinciresistens desorption.


Assuntos
Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Streptomyces/metabolismo , Zinco/metabolismo , Cátions Bivalentes/metabolismo , Modelos Químicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA