Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 26(36): 7701-7706, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39230191

RESUMO

We report a simple and convenient N-terminal thiazolidine (Thz) deprotection strategy and its application in one-pot multisegment ligation. In this strategy, O-benzylhydroxylamine (O-BHA) is used to efficiently and rapidly convert Thz into N-terminal cysteine. O-BHA can be easily separated from the ligation buffer by organic solvent extraction, avoiding the degradation of the peptide thioester by O-BHA. The utility of the O-BHA-based one-pot ligation strategy has been demonstrated in the assembly of CC chemokine ligand-2.

2.
BMC Musculoskelet Disord ; 25(1): 619, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090646

RESUMO

BACKGROUND: Social participation is an important index of rehabilitation and social reintegration in patients after total knee arthroplasty (TKA). However, most existing studies focus on improving patients' functioning and activities, with only a few examining the social participation among patients after TKA. Therefore, the study aims to investigate the heterogeneity of social participation in patients three months after TKA and analyze subgroup influencing factors, to promote functional exercise and postoperative follow-up in specific patients. METHODS: This cross-sectional study recruited 255 patients who underwent TKA in a Tertiary Hospital in Jinan City, China, from March to July 2022. Three months after having undergone TKA, participants' data were collected using the Numeric Pain Rating Scale, the Chinese version of the Tampa Scale of Kinesiophobia, the 10-item Kessler Psychological Distress Scale, Hospital for Special Surgery Knee-rating Scale, and Impact on Participation and Autonomy Questionnaire. Latent profile analysis was used to identify categories of patients' social participation. Multiple logistic regression analysis was used to analyze the influencing factors of the different subgroups. RESULTS: Three months after TKA, the patients were divided into three subgroups: low social participation group (17.9%), moderate social participation group (40.8%), and high social participation group (41.3%). The vast majority of patients who underwent TKA exhibited moderate-to-high level of social participation. The multiple logistic regression analysis results showed that age, degree of pain, knee function, and kinesiophobia were the influencing factors of the potential profiles of social participation in patients three months after TKA (p < 0.05). CONCLUSION: These results support a distinct categorical feature of social participation among patients three months after undergoing TKA. Medical staff need to provide targeted guidance according to the potential classification characteristics of social participation to improve the level of social participation and promote rehabilitation of patients.


Assuntos
Artroplastia do Joelho , Participação Social , Humanos , Artroplastia do Joelho/reabilitação , Artroplastia do Joelho/psicologia , Artroplastia do Joelho/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Transversais , China/epidemiologia , Recuperação de Função Fisiológica , Inquéritos e Questionários , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/psicologia , Fatores de Tempo , Medição da Dor
3.
Chem Asian J ; : e202400764, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136385

RESUMO

The creation of hydrogen using the lower-cost feedstock, waste organics (WOs), e.g. kitchen waste bio-oil, is a win-win solution, because it can both solve energy problems and reduce environmental pollution. Ultrasound has received considerable interest in organic decomposition; however, the application of ultrasound alone is not a good choice for the hydrogen production from WOs, because of the energy consumption and efficiency. To boost the hydrogen production based on ultrasonic cavitation cracking of bio-oil, photothermal materials are introduced into the hydrogen production system to form localized hot spots. Materials carbon black (CB), carbon nanotubes (CNT), and silicon dioxide (SiO2) all exhibit significant enhancing effects on the hydrogen production from bio-oil, and the CB exhibits the most significant strengthening effect among these materials. When the dosage of CB is 5 mg, hydrogen production rate is 180.1 µmol · h-1, representing a notable 1.7-fold increase compared to the production rate without CB. In the presence of light and ultrasound, the hydrogen production rate can be increased by 66.7-fold compared to the situation where only light is present without ultrasound.

4.
CNS Neurosci Ther ; 30(8): e14895, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097911

RESUMO

BACKGROUND: Idiopathic intracranial hypertension (IIH) mainly affects obese young women, causing elevated intracranial pressure, headaches, and papilledema, risking vision loss and severe headaches. Despite weight loss as the primary treatment, the underlying mechanisms remain unclear. Recent research explores novel therapeutic targets. AIMS: This review aimed to provide a comprehensive understanding of IIH's pathophysiology and clinical features to inform pathogenesis and improve treatment strategies. METHODS: Recent publications on IIH were searched and summarized using PubMed, Web of Science, and MEDLINE. RESULTS: The review highlights potential pathomechanisms and therapeutic advances in IIH. CONCLUSION: IIH incidence is rising, with growing evidence linking it to metabolic and hormonal disturbances. Early diagnosis and treatment remain challenging.


Assuntos
Pseudotumor Cerebral , Humanos , Pseudotumor Cerebral/diagnóstico , Pseudotumor Cerebral/terapia , Pseudotumor Cerebral/complicações , Pseudotumor Cerebral/fisiopatologia
5.
Theranostics ; 14(1): 324-340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164157

RESUMO

Theranostic platforms, combining diagnostic and therapeutic approaches within one system, have garnered interest in augmenting invasive surgical, chemical, and ionizing interventions. Magnetic particle imaging (MPI) offers a quite recent alternative to established radiation-based diagnostic modalities with its versatile tracer material (superparamagnetic iron oxide nanoparticles, SPION). It also offers a bimodal theranostic framework that can combine tomographic imaging with therapeutic techniques using the very same SPION. Methods: We show the interleaved combination of MPI-based imaging, therapy (highly localized magnetic fluid hyperthermia (MFH)) and therapy safety control (MPI-based thermometry) within one theranostic platform in all three spatial dimensions using a commercial MPI system and a custom-made heating insert. The heating characteristics as well as theranostic applications of the platform were demonstrated by various phantom experiments using commercial SPION. Results: We have shown the feasibility of an MPI-MFH-based theranostic platform by demonstrating high spatial control of the therapeutic target, adequate MPI-based thermometry, and successful in situ interleaved MPI-MFH application. Conclusions: MPI-MFH-based theranostic platforms serve as valuable tools that enable the synergistic integration of diagnostic and therapeutic approaches. The transition into in vivo studies will be essential to further validate their potential, and it holds promising prospects for future advancements.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Termometria , Medicina de Precisão , Diagnóstico por Imagem/métodos , Nanopartículas de Magnetita/uso terapêutico , Campos Magnéticos
6.
Biomark Res ; 11(1): 71, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475010

RESUMO

BACKGROUND: For early screening and diagnosis of non-small cell lung cancer (NSCLC), a robust model based on plasma proteomics and metabolomics is required for accurate and accessible non-invasive detection. Here we aim to combine TMT-LC-MS/MS and machine-learning algorithms to establish models with high specificity and sensitivity, and summarize a generalized model building scheme. METHODS: TMT-LC-MS/MS was used to discover the differentially expressed proteins (DEPs) in the plasma of NSCLC patients. Plasma proteomics-guided metabolites were selected for clinical evaluation in 110 NSCLC patients who were going to receive therapies, 108 benign pulmonary diseases (BPD) patients, and 100 healthy controls (HC). The data were randomly split into training set and test set in a ratio of 80:20. Three supervised learning algorithms were applied to the training set for models fitting. The best performance models were evaluated with the test data set. RESULTS: Differential plasma proteomics and metabolic pathways analyses revealed that the majority of DEPs in NSCLC were enriched in the pathways of complement and coagulation cascades, cholesterol and bile acids metabolism. Moreover, 10 DEPs, 14 amino acids, 15 bile acids, as well as 6 classic tumor biomarkers in blood were quantified using clinically validated assays. Finally, we obtained a high-performance screening model using logistic regression algorithm with AUC of 0.96, sensitivity of 92%, and specificity of 89%, and a diagnostic model with AUC of 0.871, sensitivity of 86%, and specificity of 78%. In the test set, the screening model achieved accuracy of 90%, sensitivity of 91%, and specificity of 90%, and the diagnostic model achieved accuracy of 82%, sensitivity of 77%, and specificity of 86%. CONCLUSIONS: Integrated analysis of DEPs, amino acid, and bile acid features based on plasma proteomics-guided metabolite profiling, together with classical tumor biomarkers, provided a much more accurate detection model for screening and differential diagnosis of NSCLC. In addition, this new mathematical modeling based on plasma proteomics-guided metabolite profiling will be used for evaluation of therapeutic efficacy and long-term recurrence prediction of NSCLC.

7.
J Cereb Blood Flow Metab ; 43(11): 1857-1872, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309740

RESUMO

Vascular cognitive impairment (VCI) represents the second most common cause of dementia after Alzheimer's disease, and pathological changes in cerebral vascular structure and function are pivotal causes of VCI. Cognitive impairment caused by arterial ischemia has been extensively studied the whole time; the influence of cerebral venous congestion on cognitive impairment draws doctors' attention in recent clinical practice, but the underlying neuropathophysiological alterations are not completely understood. This study elucidated the specific pathogenetic role of cerebral venous congestion in cognitive-behavioral deterioration and possible electrophysiological mechanisms. Using cerebral venous congestion rat models, we found these rats exhibited decreased long-term potentiation (LTP) in the hippocampal dentate gyrus and impaired spatial learning and memory. Based on untargeted metabolomics, N-acetyl-L-cysteine (NAC) deficiency was detected in cerebral venous congestion rats; supplementation with NAC appeared to ameliorate synaptic deficits, rescue impaired LTP, and mitigate cognitive impairment. In a cohort of cerebral venous congestion patients, NAC levels were decreased; NAC concentration was negatively correlated with subjective cognitive decline (SCD) score but positively correlated with mini-mental state examination (MMSE) score. These findings provide a new perspective on cognitive impairment and support further exploration of NAC as a therapeutic target for the prevention and treatment of VCI.


Assuntos
Disfunção Cognitiva , Demência Vascular , Hiperemia , Humanos , Ratos , Animais , Demência Vascular/patologia , Encéfalo/patologia , Cognição
8.
Cell Biosci ; 12(1): 202, 2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528776

RESUMO

In the aging process and central nervous system (CNS) diseases, the functions of the meningeal lymphatic vessels (MLVs) are impaired. Alterations in MLVs have been observed in aging-related neurodegenerative diseases, brain tumors, and even cerebrovascular disease. These findings reveal a new perspective on aging and CNS disorders and provide a promising therapeutic target. Additionally, recent neuropathological studies have shown that MLVs exchange soluble components between the cerebrospinal fluid (CSF) and interstitial fluid (ISF) and drain metabolites, cellular debris, misfolded proteins, and immune cells from the CSF into the deep cervical lymph nodes (dCLNs), directly connecting the brain with the peripheral circulation. Impairment and dysfunction of meningeal lymphatics can lead to the accumulation of toxic proteins in the brain, exacerbating the progression of neurological disorders. However, for many CNS diseases, the causal relationship between MLVs and neuropathological changes is not fully clear. Here, after a brief historical retrospection, we review recent discoveries about the hallmarks of MLVs and their roles in the aging and CNS diseases, as well as potential therapeutic targets for the treatment of neurologic diseases.

9.
J Mol Cell Biol ; 14(3)2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259279

RESUMO

Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissue-specific clinical cancers. These clinical site mutants acquire a distinctively new epigenetic role and mediate cancer evolution. In this study, we mimicked histone H3 at the 56th lysine (H3K56) mutant incorporation in mouse embryonic stem cells (mESCs) by lentivirus-mediated ectopic expression and analyzed the effects on replication and epigenetic regulation. The data show that two types of H3K56 mutants, namely H3 lysine 56-to-methionine (H3K56M) and H3 lysine 56-to-alanine (H3K56A), promote replication by recruiting more minichromosome maintenance complex component 3 and checkpoint kinase 1 onto chromatin compared with wild-type histone H3 and other site substitution mutants. Under this condition, the frequency of genomic copy number gain in H3K56M and H3K56A cells globally increases, especially in the Mycl1 region, a known molecular marker frequently occurring in multiple malignant cancers. Additionally, we found the disruption of H3K56 acetylation distribution in the copy-gain regions, which indicates a probable epigenetic mechanism of H3K56M and H3K56A. We then identified that H3K56M and H3K56A can trigger a potential adaptation to transcription; genes involved in the mitogen-activated protein kinase pathway are partially upregulated, whereas genes associated with intrinsic apoptotic function show obvious downregulation. The final outcome of ectopic H3K56M and H3K56A incorporation in mESCs is an enhanced ability to form carcinomas. This work indicates that H3K56 site conservation and proper modification play important roles in harmonizing the function of the replication machinery in mESCs.


Assuntos
Histonas , Lisina , Acetilação , Animais , Epigênese Genética , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo
10.
Cell Death Dis ; 13(3): 206, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246504

RESUMO

Aerobic glycolysis (the Warburg effect) has been demonstrated to facilitate tumor progression by producing lactate, which has important roles as a proinflammatory and immunosuppressive mediator. However, how aerobic glycolysis is directly regulated is largely unknown. Here, we show that ectopic Zeb1 directly increases the transcriptional expression of HK2, PFKP, and PKM2, which are glycolytic rate-determining enzymes, thus promoting the Warburg effect and breast cancer proliferation, migration, and chemoresistance in vitro and in vivo. In addition, Zeb1 exerts its biological effects to induce glycolytic activity in response to hypoxia via the PI3K/Akt/HIF-1α signaling axis, which contributes to fostering an immunosuppressive tumor microenvironment (TME). Mechanistically, breast cancer cells with ectopic Zeb1 expression produce lactate in the acidic tumor milieu to induce the alternatively activated (M2) macrophage phenotype through stimulation of the PKA/CREB signaling pathway. Clinically, the expression of Zeb1 is positively correlated with dysregulation of aerobic glycolysis, accumulation of M2-like tumor-associated macrophages (TAMs) and a poor prognosis in breast cancer patients. In conclusion, these findings identify a Zeb1-dependent mechanism as a driver of breast cancer progression that acts by stimulating tumor-macrophage interplay, which could be a viable therapeutic target for the treatment of advanced human cancers.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Macrófagos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
11.
Neoplasma ; 68(6): 1301-1309, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34648299

RESUMO

This study aimed to measure the expression of SAA2 in plasma and to assess its diagnostic efficacy as a biomarker for non-small cell lung cancer (NSCLC). The gene expression of SAA2 in NSCLC was analyzed based on a database. Then, SAA2 expression was detected by immunohistochemistry in lung tissue and by enzyme-linked immunosorbent assay in 90 patients with NSCLC and 61 normal controls. Finally, the diagnostic performance was assessed in terms of accuracy, sensitivity, and specificity. At the gene and protein levels, the SAA2 expression was significantly higher in the NSCLC group than in the control group (p<0.01). It was higher in lung squamous carcinoma than in lung adenocarcinoma and in males than in females, and this trend was also observed in the lung squamous carcinoma group. Of note, the expression of SAA2 increased with increasing disease stage. Receiver operating characteristic (ROC) curve analysis revealed that the sensitivity of SAA2 was 83.61%, the specificity was 91.11%, and the area under the curve (AUC) was 0.9252. Its accuracy was 68.89%, which was higher than that of other conventional diagnostic biomarkers, and the combined application can effectively improve the diagnostic efficiency. Based on the results, SAA2 expression was positively correlated with the disease stage of NSCLC. Notably, SAA2 is more concerning in male patients with lung squamous carcinoma, and it can help in the screening and diagnosis of NSCLC. SAA2 may represent a novel diagnostic biomarker in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Área Sob a Curva , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Masculino , Curva ROC , Proteína Amiloide A Sérica/genética
12.
Bioengineered ; 12(1): 3674-3683, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34261411

RESUMO

To investigate the effect of optimized GPC3-specific chimeric antigen receptor (GPC3-CAR) structure on killing hepatocellular carcinoma (HCC) cells. We constructed three lentiviral expression vectors with different CAR structures by genetic engineering and molecular cloning techniques. These three CAR structures shared the same intracellular signaling region consisting of 4-1BB and CD3ζ, but had different hinge and transmembrane regions. Specifically, GPC3-O4-CAR contained an optimized CD8α hinge region and a 4-1BB transmembrane domain; GPC3-CD8-CAR contained an optimized CD8α hinge region and a CD8α transmembrane domain; and GPC3-ori-CAR contained an original CD8α hinge region and a 4-1BB transmembrane domain. With similar transfection efficiency, it was observed by fluorescence microscopy that GPC3-O4-CAR expression on the surface of 293 T cells was much higher than those of the other two. Cytotoxicity experiments showed that T or NK cells with GPC3-O4-CAR structure were more lethal and could secrete more IFN-γ than the other two. In conclusion, GPC3-O4-CAR can be efficiently and stably expressed on the cell surface. Moreover, both the killing effect of transduced T and NK cells on GPC3-positive HCC cells and release of IFN-γ are increased.


Assuntos
Carcinoma Hepatocelular , Sobrevivência Celular , Glipicanas , Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Glipicanas/genética , Glipicanas/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Imunoterapia Adotiva , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo
13.
Nat Commun ; 11(1): 5129, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046710

RESUMO

Zinc finger E-box binding homeobox 1 (Zeb1) has been demonstrated to participate in the acquisition of the properties of cancer stem cells (CSCs). However, it is largely unknown how signals from the tumor microenvironment (TME) contribute to aberrant Zeb1 expression. Here, we show that Zeb1 depletion suppresses stemness, colonization and the phenotypic plasticity of breast cancer. Moreover, we demonstrate that, with direct cell-cell contact, TME-derived endothelial cells provide the Notch ligand Jagged1 (Jag1) to neighboring breast CSCs, leading to Notch1-dependent upregulation of Zeb1. In turn, ectopic Zeb1 in tumor cells increases VEGFA production and reciprocally induces endothelial Jag1 in a paracrine manner. Depletion of Zeb1 disrupts this positive feedback loop in the tumor perivascular niche, which eventually lessens tumor initiation and progression in vivo and in vitro. In this work, we highlight that targeting the angiocrine Jag1-Notch1-Zeb1-VEGFA loop decreases breast cancer aggressiveness and thus enhances the efficacy of antiangiogenic therapy.


Assuntos
Neoplasias da Mama/metabolismo , Proteína Jagged-1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptor Notch1/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteína Jagged-1/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fenótipo , Receptor Notch1/genética , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
J Cell Sci ; 131(12)2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29760279

RESUMO

Dysregulation of the homeostatic balance of histone H3 di- and tri-methyl lysine 27 (H3K27me2/3) levels caused by the mis-sense mutation of histone H3 (H3K27M) is reported to be associated with various types of cancers. In this study, we found that reduction in H3K27me2/3 caused by H3.1K27M, a mutation of H3 variants found in patients with diffuse intrinsic pontine glioma (DIPG), dramatically attenuated the presence of 53BP1 (also known as TP53BP1) foci and the capability of non-homologous end joining (NHEJ) in human dermal fibroblasts. H3.1K27M mutant cells showed increased rates of genomic insertions/deletions and copy number variations, as well as an increase in p53-dependent apoptosis. We further showed that both hypo-H3K27me2/3 and H3.1K27M interacted with FANCD2, a central player in the choice of DNA repair pathway. H3.1K27M triggered the accumulation of FANCD2 on chromatin, suggesting an interaction between H3.1K27M and FANCD2. Interestingly, knockdown of FANCD2 in H3.1K27M cells recovered the number of 53BP1-positive foci, NHEJ efficiency and apoptosis rate. Although these findings in HDF cells may differ from the endogenous regulation of the H3.1K27M mutant in the specific tumor context of DIPG, our results suggest a new model by which H3K27me2/3 facilitates NHEJ and the maintenance of genome stability.This article has an associated First Person interview with the first author of the paper.


Assuntos
Cromatina/metabolismo , Reparo do DNA por Junção de Extremidades , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Histonas/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/metabolismo , Linhagem Celular , Cromatina/genética , Reparo do DNA , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Fibroblastos , Instabilidade Genômica , Glioma/genética , Glioma/metabolismo , Células HEK293 , Histonas/genética , Humanos , Metilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
15.
J Biol Chem ; 291(9): 4684-97, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710852

RESUMO

Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.


Assuntos
Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Mitose , Fuso Acromático/enzimologia , Acetilação/efeitos dos fármacos , Substituição de Aminoácidos , Resistência a Medicamentos , Células HeLa , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases/genética , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Microscopia de Fluorescência , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Mutação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Imagem com Lapso de Tempo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-25632989

RESUMO

A rapid multi-residue screening method that includes 128 veterinary anti-parasitic drugs and metabolites in meat of chicken, porcine and bovine has been developed. The scope of the method focuses on screening the following main families of veterinary anti-parasitic drugs: avermectines, benzimidazoles, the polyether ionophore, anti-tapeworm, anti-trematode, anti-piroplasmosis and chemical classes of coccodiostats. The method described a QuEChERS sample preparation procedure prior to LC-MS/MS analysis. The modified QuEChERS technology minimises sample complexity and ion suppression effects. The method was validated according to European Union guidelines (2002/657/EC) for a quantitative screening method. The validation results demonstrate that the described LC-MS/MS method provides sensitive, repeatable and meets residue screening monitoring requirements.


Assuntos
Cromatografia Líquida , Carne/análise , Praguicidas/análise , Espectrometria de Massas em Tandem , Drogas Veterinárias/análise , Animais , Benzimidazóis/análise , Bovinos , Galinhas , Resíduos de Drogas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos
17.
J Biol Chem ; 286(11): 9020-30, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21205821

RESUMO

The turnover of tumor suppressor p53 is critical for its role in various cellular events. However, the pathway that regulates the turnover of the Drosophila melanogaster DMP53 is largely unknown. Here, we provide evidence for the first time that the E2 ligase, Drosophila homolog of Rad6 (dRad6/Dhr6), plays an important role in the regulation of DMP53 turnover. Depletion of dRad6 results in DMP53 accumulation, whereas overexpression of dRad6 causes enhanced DMP53 degradation. We show that dRad6 specifically interacts with DMP53 at the transcriptional activation domain and regulates DMP53 ubiquitination. Loss of dRad6 function in transgenic flies leads to lethalities and altered morphogenesis. The dRad6-induced defects in cell proliferation and apoptosis are found to be DMP53-dependent. The loss of dRad6 induces an accumulation of DMP53 that enhances the activation of apoptotic genes and leads to apoptosis in the presence of stress stimuli. In contrast to that, the E3 ligase is the primary factor that regulates p53 turnover in mammals, and this work demonstrates that the E2 ligase dRad6 is critical for the control of DMP53 degradation in Drosophila.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Proteínas de Drosophila/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Morfogênese/fisiologia , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/genética , Enzimas de Conjugação de Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA