Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(17): 8607-8617, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602354

RESUMO

High-throughput biofluid metabolomics analysis for screening life-threatening diseases is urgently needed. However, the high salt content of biofluid samples, which introduces severe interference, can greatly limit the analysis throughput. Here, a new 3-D interconnected hierarchical superstructure, namely a "plasmonic gold-on-silica (Au/SiO2) double-layered aerogel", integrating distinctive features of an upper plasmonic gold aerogel with a lower inert silica aerogel was successfully developed to achieve in situ separation and storage of inorganic salts in the silica aerogel, parallel enrichment of metabolites on the surface of the functionalized gold aerogel, and direct desorption/ionization of enriched metabolites by the photo-excited gold aerogel for rapid, sensitive, and comprehensive metabolomics analysis of human serum/urine samples. By integrating all these unique advantages into the hierarchical aerogel, multifunctional properties were introduced in the SALDI substrate to enable its effective utilization in clinical metabolomics for the discovery of reliable metabolic biomarkers to achieve unambiguous differentiation of early and advanced-stage lung cancer patients from healthy individuals. This study provides insight into the design and application of superstructured nanomaterials for in situ separation, storage, and photoexcitation of multi-components in complex biofluid samples for sensitive analysis.


Assuntos
Géis , Ouro , Metabolômica , Dióxido de Silício , Humanos , Dióxido de Silício/química , Ouro/química , Géis/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanoestruturas/química
2.
Colloids Surf B Biointerfaces ; 220: 112907, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252538

RESUMO

The family GH11 Aspergillus niger JL15 xylanase B (AnXylB11) was heterologously expressed in Pichia pastoris X33. The recombinant AnXylB11 (reAnXylB11) was secreted into the culture medium with a molecular weight of approximately 33.0 kDa. The optimal temperature and pH of reAnXylB11 were 40 â„ƒ and 5.0, respectively. reAnXylB11 released xylobiose (X2)-xylohexaose (X6) from beechwood xylan, with xylotriose (X3) as the primary product. The hydrolysates showed significant antioxidant activity. reAnXylB11 was also competitively inhibited by recombinant rice xylanase inhibitory protein (rePriceXIP), with an inhibition constant (Ki) of 106.9 nM. Molecular dynamics (MD) simulations, non-covalent interactions (NCI), and binding free energy calculation and decomposition were conducted to decipher the interactional features between riceXIP and AnXyB11. Representative conformation of riceXIP-AnXylB11 complex showed that a U-shaped long loop between α4 and ß5 (K143-L152) of riceXIP was protruded into the catalytic groove and formed tight interaction with many key residues of AnXylB11. The binding free energy of riceXIP-AnXylB11 was calculated to be - 46.1 ± 10.5 kcal/mol, with Coulomb and van der Waals forces contributing the most. NCI analysis showed that the hydrogen bonding networks such as R148riceXIP-E98AnXyl11B, K143riceXIP-D138AnXyl11B and R148riceXIP-E189AnXyl11B provided terrific contributions to the interface interaction. The Laplacian of electron density values of atom pairs R148riceXIP@ 2HH1-E89AnXylB11@OE2 and N142riceXIP@ 1HD2-D138AnXylB11@OD1 were 0.12190 and 0.16009 a.u., respectively. Exploring the interactional features between xylanase and inhibitor protein may aid in constructing mutant xylanase that is insensitive to xylanase inhibitory proteins (XIs).


Assuntos
Endo-1,4-beta-Xilanases , Pichia , Endo-1,4-beta-Xilanases/genética , Endo-1,4-beta-Xilanases/química , Endo-1,4-beta-Xilanases/metabolismo , Pichia/genética , Pichia/metabolismo , Aspergillus niger/genética , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/química , Temperatura , Estabilidade Enzimática
3.
Enzyme Microb Technol ; 160: 110082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35709658

RESUMO

The catalytic domain of family GH10 xylanase, XYN-LXY_CD derived from Hu sheep rumen microbiota was expressed in Pichia pastoris X33. The special activity of reXYN-LXY_CD in the culture supernatant was 232.56 U/mg. The optima of reXYN-LXY_CD were 53 °C and pH 7.0. Recombinant Oryza sativa xylanase inhibitor protein (rePOsXIP) competitively inhibited reXYN-LXY_CD with an inhibition constant (Ki) value of 237.37 nM. The concentration of hydrolysates released from beechwood xylan by reXYN-LXY_CD reduced when rePOsXIP was added into the hydrolytic system. Fluorescence of reXYN-LXY_CD was statically quenched by rePOsXIP in a dose-dependent manner. The details in intermolecular interaction between XYN-LXY_CD and OsXIP were investigated by using molecular dynamics (MD) simulations, binding free energy computation and non-covalent interactions (NCI) analysis. Hydrogen bonding and van der Waals played indispensable roles in the XYN-LXY_CD/OsXIP interaction. The α-7 helix of OsXIP tightly occupied the catalytic pocket of XYN-LXY_CD with hydrogen bonding such as K239OsXIP-N261/Q292/E197XYN-LXY_CD (E197, the acid-base catalytic residue), D236OsXIP-K327XYN-LXY_CD and Q242OsXIP-E211/Q212XYN-LXY_CD. Based on the quantum theory of atoms in molecules (QTAIM), the Laplacian of electron density and core-valence bifurcation index of HZ3K239-OE2E197 were 0.1025 a.u. and 0.002218, respectively. Elucidating the mechanism underlying xylanase-inhibitor interactions might help construct XYN-LXY_CD mutants that gain resistance to XIPs and high catalytic activity, which would be more efficient in feed additives in livestock.


Assuntos
Microbiota , Oryza , Animais , Endo-1,4-beta-Xilanases/química , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Oryza/metabolismo , Proteínas Recombinantes/genética , Rúmen/metabolismo , Ovinos , Xilanos/metabolismo
4.
Int J Biol Macromol ; 193(Pt B): 1391-1399, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742846

RESUMO

The family GH10 Aspergillus fumigatus xylanase A (AfXylA10) gene, afxyla10 was cloned and recombinantly expressed in Pichia pastoris X33. The optimum temperature and pH of reAfXylA10 was 53 °C and 7.0, and Mn2+ remarkably activated the catalytic activity. The recombinant Oryza sativa xylanase inhibitor protein, rePOsXIP significantly inhibited reAfXylA10 with inhibition constant (Ki) of 177.94 nM via competitive inhibition and decreased the concentration of hydrolysate from beechwood xylan. Optimal inhibition of rePOsXIP on reAfXylA10 occurred at 45 °C for 40 min. The fluorescence of reAfXylA10 was statically quenched by rePOsXIP, indicating the formation of reAfXylA10-rePOsXIP complex during their interaction. Furthermore, molecular dynamics (MD) simulations were performed to obtain the detailed information on enzyme-inhibitor interaction. The binding free energy (ΔG) of AfXylA10-OsXIP complex was -30 ± 9 kcal/mol by MM-PBSA calculation, and the α-7 helix of OsXIP anchored in the catalytic cleft of AfXylA10 by competition with the xylan substrate. K239OsXIP stably interacted with the catalytic site E140AfXylA10 through hydrogen bond and vdW interaction. Intermolecular hydrogen bonds T104AfXylA10/V99AfXylA10-Q5OsXIP, R256AfXylA10-E235OsXIP, D155AfXylA10-Y243OsXIP and D145AfXylA10-R194OsXIP on the upper of the TIM barrel were essential for strengthening the stability of complex. Therefore, these non-covalent interactions (NCI) played key role in the interaction between AfXylA10 and OsXIP.


Assuntos
Aspergillus fumigatus/metabolismo , Oryza/metabolismo , Xilanos/metabolismo , Domínio Catalítico/fisiologia , Estabilidade Enzimática/fisiologia , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA