Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Planta ; 260(1): 23, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850310

RESUMO

MAIN CONCLUSION: In this study, we assembled the first complete mitochondrial genome of Setaria italica and confirmed the multi-branched architecture. The foxtail millet (Setaria italica) holds significant agricultural importance, particularly in arid and semi-arid regions. It plays a pivotal role in diversifying dietary patterns and shaping planting strategies. Although the chloroplast genome of S. italica has been elucidated in recent studies, the complete mitochondrial genome remains largely unexplored. In this study, we employed PacBio HiFi sequencing platforms to sequence and assemble the complete mitochondrial genome. The mitochondrial genome spans a total length of 446,614 base pairs and harbors a comprehensive set of genetic elements, including 33 unique protein-coding genes (PCGs), encompassing 24 unique mitochondrial core genes and 9 variable genes, along with 20 transfer RNA (tRNA) genes and 3 ribosomal RNA (rRNA) genes. Our analysis of mitochondrial PCGs revealed a pronounced codon usage preference. For instance, the termination codon exhibits a marked preference for UAA, while alanine (Ala) exhibits a preference for GCU, and glutamine (Gln) favors CAA. Notably, the maximum Relative Synonymous Codon Usage (RSCU) values for cysteine (Cys) and phenylalanine (Phe) are both below 1.2, indicating a lack of strong codon usage preference for these amino acids. Phylogenetic analyses consistently place S. italica in close evolutionary proximity to Chrysopogon zizanioides, relative to other Panicoideae plants. Collinearity analysis showed that a total of 39 fragments were identified to display homology with both the mitochondrial and chloroplast genomes. A total of 417 potential RNA-editing sites were discovered across the 33 mitochondrial PCGs. Notably, all these editing events involved the conversion of cytosine (C) to uracil (U). Through the employment of PCR validation coupled with Sanger sequencing for the anticipated editing sites of these codons, RNA-editing events were conclusively identified at two specific loci: nad4L-2 and atp6-1030. The results of this study provide a pivotal foundation for advanced genomic breeding research in foxtail millet. Furthermore, they impart essential insights that will be instrumental for forthcoming investigations into the evolutionary and molecular dynamics of Panicoideae species.


Assuntos
Genoma Mitocondrial , Setaria (Planta) , Setaria (Planta)/genética , Genoma Mitocondrial/genética , Filogenia , RNA de Transferência/genética , Genoma de Planta/genética , Uso do Códon , RNA Ribossômico/genética , Códon/genética
2.
RSC Med Chem ; 15(5): 1640-1651, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38784471

RESUMO

A set of biotin-polyethylene glycol (PEG)-naphthalimide derivatives 4a-4h with dual targeting of ferroptosis and DNA were designed and optimized using docking simulation as antitumor agents. Docking simulation optimization results indicated that biotin-PEG4-piperazine-1,8-naphthalimide 4d should be the best candidate among these designed compounds 4a-4h, and therefore, we synthesized and evaluated it as a novel antitumor agent. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and MGC-803 and U251 xenograft models identified 4d as a good candidate antitumor agent with potent efficacy and safety profiles, compared with amonafide and temozolomide. The findings of the docking simulations, fluorescence intercalator displacement (FID), western blot, comet, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, transmission electron microscopy, and BODIPY-581/591-C11, FerroOrange, and dihydroethidium (DHE) fluorescent probe assays revealed that 4d could induce DNA damage, affect DNA synthesis, and cause cell cycle arrest in the S phase in MGC-803 cells. Also, it could induce lipid peroxidation and thus lead to ferroptosis in MGC-803 cells, indicating that it mainly exerted antitumor effects through dual targeting of ferroptosis and DNA. These results suggested that it was feasible to design, optimize using docking simulation, and evaluate the potency and safety of biotin-PEG-1,8-naphthalimide as a antitumor agent with dual targeting of ferroptosis and DNA, based on a multi-target drug strategy.

3.
Curr Radiopharm ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532606

RESUMO

BACKGROUND: Head and Neck Squamous Cell Carcinoma (HNSCC) is a malignant tumor with a high degree of malignancy, invasiveness, and metastasis rate. Radiotherapy, as an important adjuvant therapy for HNSCC, can reduce the postoperative recurrence rate and improve the survival rate. Identifying the genes related to HNSCC radiotherapy resistance (HNSCC-RR) is helpful in the search for potential therapeutic targets. However, identifying radiotherapy resistance-related genes from tens of thousands of genes is a challenging task. While interactions between genes are important for elucidating complex biological processes, the large number of genes makes the computation of gene interactions infeasible. METHODS: We propose a gene selection algorithm, RGIE, which is based on ReliefF, Gene Network Inference with Ensemble of Trees (GENIE3) and Feature Elimination. ReliefF was used to select a feature subset that is discriminative for HNSCC-RR, GENIE3 constructed a gene regulatory network based on this subset to analyze the regulatory relationship among genes, and feature elimination was used to remove redundant and noisy features. RESULTS: Nine genes (SPAG1, FIGN, NUBPL, CHMP5, TCF7L2, COQ10B, BSDC1, ZFPM1, GRPEL1) were identified and used to identify HNSCC-RR, which achieved performances of 0.9730, 0.9679, 0.9767, and 0.9885 in terms of accuracy, precision, recall, and AUC, respectively. Finally, qRT-PCR validated the differential expression of the nine signature genes in cell lines (SCC9, SCC9-RR). CONCLUSION: RGIE is effective in screening genes related to HNSCC-RR. This approach may help guide clinical treatment modalities for patients and develop potential treatments.

4.
Ecotoxicol Environ Saf ; 274: 116191, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460408

RESUMO

The reproduction toxicity of pubertal exposure to Microcystin-LR (MC-LR) and the underlying mechanism needs to be further investigated. In the current study, pubertal male ICR mice were intraperitoneally injected with 2 µg/kg MC-LR for four weeks. Pubertal exposure to MC-LR decreased epididymal sperm concentration and blocked spermatogonia proliferation. In-vitro studies found MC-LR inhibited cell proliferation of GC-1 cells and arrested cell cycle in G2/M phase. Mechanistically, MC-LR exposure evoked excessive reactive oxygen species (ROS) and induced DNA double-strand break in GC-1 cells. Besides, MC-LR inhibited DNA repair by reducing PolyADP-ribosylation (PARylation) activity of PARP1. Further study found MC-LR caused proteasomal degradation of SIRT6, a monoADP-ribosylation enzyme which is essential for PARP1 PARylation activity, due to destruction of SIRT6-USP10 interaction. Additionally, MG132 pretreatment alleviated MC-LR-induced SIRT6 degradation and promoted DNA repair, leading to the restoration of cell proliferation inhibition. Correspondingly, N-Acetylcysteine (NAC) pre-treatment mitigated the disturbed SIRT6-USP10 interaction and SIRT6 degradation, causing recovered DNA repair and subsequently restoration of cell proliferation inhibition in MC-LR treated GC-1 cells. Together, pubertal exposure to MC-LR induced spermatogonia cell cycle arrest and sperm count reduction by oxidative DNA damage and simultaneous SIRT6-mediated DNA repair failing. This study reports the effect of pubertal exposure to MC-LR on spermatogenesis and complex mechanism how MC-LR induces spermatogonia cell proliferation inhibition.


Assuntos
Toxinas Marinhas , Microcistinas , Sirtuínas , Espermatogônias , Animais , Masculino , Camundongos , Apoptose , Proliferação de Células , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Camundongos Endogâmicos ICR , Microcistinas/metabolismo , Microcistinas/toxicidade , Sêmen , Sirtuínas/efeitos dos fármacos , Sirtuínas/metabolismo , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo
5.
Cell Death Dis ; 15(2): 139, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355684

RESUMO

Radioresistance imposes a great challenge in reducing tumor recurrence and improving the clinical prognosis of individuals having oral squamous cell carcinoma (OSCC). OSCC harbors a subpopulation of CD44(+) cells that exhibit cancer stem-like cell (CSC) characteristics are involved in malignant tumor phenotype and radioresistance. Nevertheless, the underlying molecular mechanisms in CD44( + )-OSCC remain unclear. The current investigation demonstrated that methyltransferase-like 3 (METTL3) is highly expressed in CD44(+) cells and promotes CSCs phenotype. Using RNA-sequencing analysis, we further showed that Spalt-like transcription factor 4 (SALL4) is involved in the maintenance of CSCs properties. Furthermore, the overexpression of SALL4 in CD44( + )-OSCC cells caused radioresistance in vitro and in vivo. In contrast, silencing SALL4 sensitized OSCC cells to radiation therapy (RT). Mechanistically, we illustrated that SALL4 is a direct downstream transcriptional regulation target of METTL3, the transcription activation of SALL4 promotes the nuclear transport of ß-catenin and the expression of downstream target genes after radiation therapy, there by activates the Wnt/ß-catenin pathway, effectively enhancing the CSCs phenotype and causing radioresistance. Herein, this study indicates that the METTL3/SALL4 axis promotes the CSCs phenotype and resistance to radiation in OSCC via the Wnt/ß-catenin signaling pathway, and provides a potential therapeutic target to eliminate radioresistant OSCC.


Assuntos
Adenina/análogos & derivados , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Proliferação de Células/genética , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
J Med Virol ; 95(11): e29182, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37909805

RESUMO

INTRODUCTION: Human adenovirus 7 (HAdV-7) is an important viral pathogen of severe pneumonia in children and a serious threat to health. METHODS: A cohort of 45 pediatric patients diagnosed with HAdV-7-associated severe pneumonia and admitted to the Pediatric Intensive Care Unit at the Children's Hospital of Chongqing Medical University from May 2018 to January 2020 were included. Risk factors of death were analyzed by the Cox proportional risk mode with Clinical data, serum, and nasopharyngeal aspirate adenovirus load, Genome analysis, Olink proteomics, and cytokine profile between dead and surviving patients were also analyzed. RESULTS: A total of 45 children with a median age of 12.0 months (interquartile range [IQR]: 6.5, 22.0) were included (female 14), including 14 (31.1%) who died. High serum viral load was an independent risk factor for mortality (hazard ratio [HR] = 2.16, 95% confidence interval [CI], 1.04-4.49, p = 0.039). BTB and CNC homology 1 (BACH1), interleukin-5 (IL-5), and IL-9 levels were significantly correlated with serum viral load (p = 0.0400, 0.0499, and 0.0290; r = 0.4663, 0.3339, and -0.3700, respectively), with significant differences between the dead and survival groups (p = 0.021, 0.001, and 0.021). CONCLUSIONS: Severe cytokine storm-associated high serum viral load after HAdV-7 infection may be the main mechanism responsible for poor prognosis in children.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Infecções Comunitárias Adquiridas , Pneumonia Viral , Pneumonia , Criança , Humanos , Feminino , Lactente , Adenovírus Humanos/genética , Proteômica , Fatores de Risco
7.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630387

RESUMO

Indoleamine-2,3-dioxygenase 1 (IDO1) and signal transducer and activator of transcription 3 (STAT3) have emerged as significant targets in the tumor microenvironment for cancer therapy. In this study, we synthesized three novel 2-amino-1,4-naphthoquinone amide-oxime derivatives and identified them as dual inhibitors of IDO1 and STAT3. The representative compound NK3 demonstrated effective binding to IDO1 and exhibited good inhibitory activity (hIDO1 IC50 = 0.06 µM), leading to its selection for further investigation. The direct interactions between compound NK3 and IDO1 and STAT3 proteins were confirmed through surface plasmon resonance analysis. A molecular docking study of compound NK3 revealed key interactions between NK3 and IDO1, with the naphthoquinone-oxime moiety coordinating with the heme iron. In the in vitro anticancer assay, compound NK3 displayed potent antitumor activity against selected cancer cell lines and effectively suppressed nuclear translocation of STAT3. Moreover, in vivo assays conducted on CT26 tumor-bearing Balb/c mice and an athymic HepG2 xenograft model revealed that compound NK3 exhibited potent antitumor activity with low toxicity relative to 1-methyl-L-tryptophan (1-MT) and doxorubicin (DOX). Overall, these findings provided evidence that the dual inhibitors of IDO1 and STAT3 may offer a promising avenue for the development of highly effective drug candidates for cancer therapy.


Assuntos
Naftoquinonas , Fator de Transcrição STAT3 , Humanos , Animais , Camundongos , Simulação de Acoplamento Molecular , Estudos Prospectivos , Amidas/farmacologia , Camundongos Endogâmicos BALB C , Naftoquinonas/farmacologia , Oximas/farmacologia
8.
Immunotherapy ; 15(12): 897-903, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337737

RESUMO

Herein, we report a case of an elderly male patient who underwent extended radical resection of cardiac carcinoma after regular chemotherapy combined with sintilimab (PD-1 monoclonal antibody) immunotherapy complicated with severe pneumonitis postoperatively. We performed several treatments for aspiration pneumonitis; however, the patient's pulmonary infection and oxygenation were not efficiently improved. The multidisciplinary team considered it an immune checkpoint inhibitor-associated pneumonitis after diagnosis and treatment and then modified the treatment regimen. The pulmonary inflammation was effectively controlled with improved oxygenation; the patient was gradually weaned from the ventilator and finally discharged. The possibility of immune checkpoint inhibitor-associated pneumonitis should be fully considered particularly for patients with a history of immunosuppressive therapy with clinical symptoms of severe pneumonitis.


Pneumonia is well known. Immune pneumonia may be a new problem. It occurs in 2­5% of patients with immune therapy. It is a bad reaction with low incidence. If this disease is not treated in time, it will cause a relatively terrible result. The fatality rate can reach 12.8­22.7%. The most severe cases can be life threatening. At present, the reason for immune pneumonia is not clear. Some experts believe that it is related to immune change. Dyspnea, cough, fever and chest pain are symptoms of this disease. Although the incidence of immune pneumonia is very low, it should be noted. If you are on immunotherapy, consult your doctor when you feel unwell.


Assuntos
Neoplasias Pulmonares , Pneumonia , Humanos , Masculino , Idoso , Inibidores de Checkpoint Imunológico/efeitos adversos , Pneumonia/diagnóstico , Pneumonia/etiologia , Pulmão/patologia , Anticorpos Monoclonais/efeitos adversos , Imunoterapia/efeitos adversos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico
9.
Clin Transl Oncol ; 25(10): 3006-3020, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37029240

RESUMO

BACKGROUND: In the treatment of oral squamous cell carcinoma (OSCC), radiation resistance remains an important obstacle to patient outcomes. Progress in understanding the molecular mechanisms of radioresistance has been limited by research models that do not fully recapitulate the biological features of solid tumors. In this study, we aimed to develop novel in vitro models to investigate the underlying basis of radioresistance in OSCC and to identify novel biomarkers. METHODS: Parental OSCC cells (SCC9 and CAL27) were repeatedly exposed to ionizing radiation to develop isogenic radioresistant cell lines. We characterized the phenotypic differences between the parental and radioresistant cell lines. RNA sequencing was used to identify differentially expressed genes (DEGs), and bioinformatics analysis identified candidate molecules that may be related to OSCC radiotherapy. RESULTS: Two isogenic radioresistant cell lines for OSCC were successfully established. The radioresistant cells displayed a radioresistant phenotype when compared to the parental cells. Two hundred and sixty DEGs were co-expressed in SCC9-RR and CAL27-RR, and thirty-eight DEGs were upregulated or downregulated in both cell lines. The associations between the overall survival (OS) of OSCC patients and the identified genes were analyzed using data from the Cancer Genome Atlas (TCGA) database. A total of six candidate genes (KCNJ2, CLEC18C, P3H3, PIK3R3, SERPINE1, and TMC8) were closely associated with prognosis. CONCLUSION: This study demonstrated the utility of constructing isogenic cell models to investigate the molecular changes associated with radioresistance. Six genes were identified based on the data from the radioresistant cells that may be potential targets in the treatment of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/radioterapia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Perfilação da Expressão Gênica , Tolerância a Radiação/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Linhagem Celular Tumoral , Biomarcadores , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Proteínas de Membrana/genética , Fosfatidilinositol 3-Quinases/genética
10.
Arch Virol ; 168(5): 130, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017816

RESUMO

Human adenovirus type 7 (HAdV-7) can cause severe pneumonia and complications in children. However, the mechanism of pathogenesis and the genes involved remain largely unknown. We collected HAdV-7-infected and mock-infected A549 cells at 24, 48, and 72 hours postinfection (hpi) for RNA sequencing (RNA-Seq) and identified potential genes and functional pathways associated with HAdV-7 infection using weighted gene coexpression network analysis (WGCNA). Based on bioinformatics analysis, 12 coexpression modules were constructed by WGCNA, with the blue, tan, and brown modules significantly positively correlated with adenovirus infection at 24, 48, and 72 hpi, respectively. Functional enrichment analysis indicated that the blue module was mainly enriched in DNA replication and viral processes, the tan module was largely enriched in metabolic pathways and regulation of superoxide radical removal, and the brown module was predominantly enriched in regulation of cell death. qPCR was used to determine transcript abundance of some identified hub genes, and the results were consistent with those from RNA-Seq. Comprehensively analyzing hub genes and differentially expressed genes in the GSE68004 dataset, we identified SOCS3, OASL, ISG15, and IFIT1 as potential candidate genes for use as biomarkers or drug targets in HAdV-7 infection. We propose a multi-target inhibition of the interferon signaling mechanism to explain the association of HAdV-7 infection with the severity of clinical consequences. This study has allowed us to construct a framework of coexpression gene modules in A549 cells infected with HAdV-7, thus providing a basis for identifying potential genes and pathways involved in adenovirus infection and for investigating the pathogenesis of adenovirus-associated diseases.


Assuntos
Adenovírus Humanos , Redes Reguladoras de Genes , Criança , Humanos , Adenovírus Humanos/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores , Interferons/genética
11.
Eur J Med Chem ; 254: 115349, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060754

RESUMO

A series of chromone-oxime derivatives containing piperazine sulfonamide moieties were designed, synthesized and evaluated for their inhibitory activities against IDO1. These compounds displayed moderate to good inhibitory activity against IDO1 with IC50 values in low micromolar range. Among them, compound 10m bound effectively to IDO1 with good inhibitory activities (hIDO1 IC50 = 0.64 µM, HeLa IDO1 IC50 = 1.04 µM) and were selected for further investigation. Surface plasmon resonance analysis confirmed the direct interaction between compound 10m and IDO1 protein. Molecular docking study of the most active compound 10m revealed key interactions between 10m and IDO1 in which the chromone-oxime moiety coordinated to the heme iron and formed several hydrogen bonds with the porphyrin ring of heme and ALA264, consistent with the observation by UV-visible spectra that 10m induced a Soret peak shift from 403 to 421 nm. Moreover, compound 10m exhibited no cytotoxicity at its effective concentration in MTT assay. Consistently, in vivo assays results demonstrated that 10m displayed potent antitumor activity with low toxicity in CT26 tumor-bearing Balb/c mice, in comparison with 1-methyl-l-tryptophan (1-MT) and 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L). In brief, the results suggested that chromone-oxime derivatives containing sulfonamide moieties might serve as IDO1 inhibitors for the development of new antitumor agents.


Assuntos
Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Camundongos , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Oximas/farmacologia , Heme , Sulfonamidas/farmacologia
12.
Bioorg Med Chem Lett ; 85: 129218, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36894107

RESUMO

A series of mono- and bisnaphthalimides derivatives containing 3-nitro and 4-morpholine moieties were designed, synthesized, and evaluated for their in vitro anticancer activities against four cancer cell lines. Some compounds exhibited relatively good antiproliferative activity on the cell lines tested, in comparison with mitonafide and amonafide. It is noteworthy that bisnaphthalimide A6 was identified as the most potent compound in anti-proliferation against MGC-803 cells, with an IC50 lowered to 0.09 µM, a far greater potency than that of mono-naphthalimide A7, mitonafide, and amonafide. A gel electrophoresis assay revealed that DNA and Topo I were the potential targets of compounds A6 and A7. The treatment of CNE-2 cells with compounds A6 and A7 resulted in an S phase cell cycle arrest, accompanied by the upregulation of the expression levels of the antioncogene p27 and the down-regulation of the expression levels of CDK2 and cyclin E. In addition, compounds A6 and A7-induced apoptosis was further confirmed by flow cytometry, ROS generation assay, and Hoechst 33,258 staining. In particular, in vivo antitumor assay results revealed that bisnaphthalimide A6 exhibited potent anticancer efficiency in an MGC-803 xenograft tumor model, in comparison with mitonafide, and had lower toxicity than mono-naphthalimide A7. In brief, the results suggested that bisnaphthalimide derivatives containing 3-nitro and 4-morpholine moieties might serve as DNA binding agents for the development of new antitumor agents.


Assuntos
Antineoplásicos , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Apoptose , DNA/química , Morfolinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade , Estrutura Molecular
13.
Bioorg Chem ; 131: 106323, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36538834

RESUMO

Two biotin-polyethylene glycol (PEG)4­diarylidenyl piperidone (DAP) prodrugs, compounds 3a and 3b, were designed as antineoplastic agents and synthesized by coupling biotin to bifluoro- and binitro-substituted DAP derivatives (DAP-F and DAP-NO2) through a PEG4 linker, respectively. The results of the MTT (3-(4, 5)-dimethylthiahiazo (-z-y1)-3, 5-di- phenytetrazoliumromide) assay and a SW480 xenograft model identified compounds 3a and 3b as candidate antitumor agents with good efficacy, limited toxicity, and low resistance, as compared to the original drugs (DAP-F and DAP-NO2), cisplatin, and doxorubicin (dox). The results of a preliminary pharmacokinetic study showed that compounds 3a and 3b slowly released their original drug DAP-F and DAP-NO2 within 12 h after intraperitoneal injection, respectively. Western blot analysis and computer docking simulations indicated that DAP-F, DAP-NO2, and compounds 3a and 3b were indeed inhibitors of signal transducer and activator of transcription 3 (STAT3) and the antitumor effects of compounds 3a and 3b were exerted by sequentially interacting with the SH2-binding domain followed by the DNA-binding domain after releasing the original drugs DAP-F and DAP-NO2, respectively. These results suggest that the targeted prodrug model led to good antitumor efficacy with reduced toxicity, while a dual STAT3-binding model may promote antitumor efficacy and resistance.


Assuntos
Antineoplásicos , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Biotina , Dióxido de Nitrogênio , Antineoplásicos/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
14.
Cancer Med ; 12(4): 4496-4509, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36039037

RESUMO

BACKGROUND: Perineural invasion (PNI) is a typical pathological characteristic of salivary adenoid cystic carcinoma (SACC) and other neurotrophic cancers. The mechanism of the neural microenvironment controlling tumor progression during the PNI process is unclear. In the present study, we investigated the role and molecular mechanisms of nerve-derived neuropeptide galanin (GAL) and its receptor (GALR2) in the regulation of PNI in SACC. METHODS: Immunohistochemistry staining and clinical association studies were performed to analyze the expression of GAL and GALR2 in SACC tissues and their clinical value. Dorsal root ganglion or SH-SY5Y cells were co-cultured with SACC cells in vitro to simulate the interactions between the neural microenvironment and tumor cells, and a series of assays including transcriptome sequencing, Western blot, and Transwell were performed to investigate the role and molecular mechanism of GAL and GALR2 in the regulation of SACC cells. Moreover, both the in vitro and in vivo PNI models were established to assess the potential PNI-specific therapeutic effects by blocking the GAL/GALR2 axis. RESULTS: GAL and GALR2 were highly expressed in SACC tissues, and were associated with PNI and poor prognosis in SACC patients (p < 0.05). Nerve-derived GAL activated GALR2 expression in SACC cells and induced epithelial-to-mesenchymal transition (EMT) in SACC cells. Adding human recombinant GAL to the co-culture system promoted the proliferation, migration, and invasion of SACC cells significantly, but inhibited the apoptosis of SACC cells. Adding M871, a specific antagonist of GALR2, significantly blocked the above effects (p < 0.05) and inhibited the PNI of SACC cells in vitro and in vivo (p < 0.05). CONCLUSIONS: This study demonstrated that nerve-derived GAL activated GALR2 expression, and promoted EMT in SACC cells, thereby enhancing the PNI process. Interruption of the GAL/GALR2 axis might be a novel strategy for anti-PNI therapy for SACC.


Assuntos
Carcinoma Adenoide Cístico , Neuroblastoma , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/patologia , Galanina , Transição Epitelial-Mesenquimal , Western Blotting , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Linhagem Celular Tumoral , Invasividade Neoplásica/patologia , Movimento Celular , Microambiente Tumoral
15.
Metallomics ; 14(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36149330

RESUMO

Three ursolic acid-piperazine-dithiocarbamate ruthenium(II) polypyridyl complexes Ru1-Ru3 were designed and synthesized for evaluating antitumor activity. All the complexes exhibited high in vitro cytotoxicity against MGC-803, T24, HepG2, CNE2, MDA-MB-231, MCF-7, A549, and A549/DDP cell lines. Ru1, Ru2, and Ru3 were 11, 8 and 10 times, respectively, more active than cisplatin against A549/DDP. An in vivo study on MGC-803 xenograft mouse models demonstrated that representative Ru2 exhibited an effective inhibitory effect on tumor growth, showing stronger antitumor activity than cisplatin. Biological investigations suggested that Ru2 entered MGC-803 cells by a clathrin-mediated endocytic pathway, initially localizing in the lysosomes and subsequently escaping and localizing in the mitochondria. Mitochondrial swelling resulted in vacuolization, which induced vacuolation-associated cell death and necroptosis with the formation of necrosomes (RIP1-RIP3) and the uptake of propidium iodide. These results demonstrate that the potential of Ru2 as a chemotherapeutic agent to kill cancer cells via a dual mechanism represents an alternative way to eradicate apoptosis-resistant forms of cancer.


Assuntos
Antineoplásicos , Complexos de Coordenação , Rutênio , Animais , Antineoplásicos/farmacologia , Apoptose , Cisplatino/farmacologia , Clatrina/farmacologia , Complexos de Coordenação/farmacologia , Humanos , Camundongos , Necroptose , Ácido Oleanólico/análogos & derivados , Piperazina/farmacologia , Propídio/farmacologia , Rutênio/farmacologia , Ácido Ursólico
16.
Front Cell Dev Biol ; 10: 961858, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046345

RESUMO

Objectives: In head and neck squamous cell carcinoma (HNSCC), the interaction between epithelial-mesenchymal transformation (EMT) and hypoxia has been confirmed, and corresponding treatment methods have been investigated. Few studies have examined its combined effects and its potential clinical use, however. As a result, we developed a new scoring system based on EMT and hypoxia. Methods: We combined 200 hypoxia-related genes with 1184 EMT-related genes and finally constructed a score risk model containing 14 characteristic factors named the comprehensive index of EMT and hypoxia (CIEH) by the Lasso-Cox regression and univariate Cox regression method, which is used to predict prognosis and to guide treatment planning in HNSCC patients. Furthermore, we examined HNSCC expression of CIEH-related genes using the human protein atlas database. Results: Based on survival analysis results, CIEH value had a high prognostic value in HNSCC patients, a high CIEH value carries a poor prognostic significance in HNSCC. It is noteworthy that the CIEH value was correlated with tumor immune infiltration. Moreover, the CIEH had significant differences in age, stage, N, laterality, and peripheral nerve invasion, and that the CIEH could be an independent prognostic factor. Conclusions: This study constructed a CIEH model containing 14 characteristic factors, including hypoxia-related genes and EMT genes, that may be able to serve as potential biomarkers for HNSCC. According to the 14 characteristic factors in the CIEH model, a diagnostic kit can be packaged in the future to evaluate the survival of patients before tumor surgery and guide the subsequent treatment plan.

17.
Ear Nose Throat J ; : 1455613221112365, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35793206

RESUMO

Primary leiomyosarcoma of the tongue is a rare malignant mesenchymal tumor with high recurrence rate and metastatic potential. Through analysis of one case condition and literature review, this paper discusses the clinical characteristics and treatment methods and recommends that expanded resection surgery should be the first intervention. Postoperative adjuvant radiotherapy and combined chemotherapy should be administered if the case specifically requires such an approach.

18.
Ear Nose Throat J ; : 1455613221112353, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794076

RESUMO

Melanotic neuroectodermal tumor of infancy (MNTI) is a rare benign tumor. Here, we report the diagnosis and treatment of 1 case of MNTI in the maxilla and discuss its clinical and pathological features, imaging features, treatment, and prognosis.

19.
BMC Oral Health ; 22(1): 138, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459139

RESUMO

BACKGROUND: Few models about the personalized prognosis evaluation of buccal mucosa cancer (BMC) patients were reported. We aimed to establish predictive models to forecast the prognosis of BMC patients. METHODS: The complete clinicopathological information of BMC patients from the surveillance, epidemiology and end results program was collected and reviewed retrospectively. Two nomograms were established and validated to predict long-term overall survival (OS) and cancer-specific survival (CSS) of BMC patients based on multivariate Cox regression survival analysis. RESULTS: 1155 patients were included. 693 and 462 patients were distributed into modeling and validation groups with 6:4 split-ratio via a random split-sample method. Based on the survival analysis, independent prognostic risk factors (variables that can be used to estimate disease recovery and relapse chance) influencing OS and CSS were obtained to establish nomograms. Then, we divided the modeling group into high- and low-risk cohorts. The low-risk cohort had improved OS and CSS compared to the high-risk cohort, which was statistically significant after the Log-rank test (p < 0.05). Furthermore, we used the concordance index (C-index), calibration curve to validate the nomograms, showing high accuracy. The decision curve analyses (DCA) revealed that the nomograms had evident clinical value. CONCLUSIONS: We constructed two credible nomogram models, which would give the surgeons reference to provide an individualized assessment of BMC patients.


Assuntos
Neoplasias Bucais , Nomogramas , Humanos , Mucosa Bucal , Recidiva Local de Neoplasia , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Programa de SEER
20.
Cell Death Dis ; 13(2): 109, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115487

RESUMO

Numerous studies have shown that long noncoding RNAs (LncRNAs) are involved in the development and immune escape of head and neck squamous-cell carcinoma (HNSCC). However, the specific regulatory mechanisms by which LINC01123 regulates HNSCC and its correlation with immunity remain unclear. Therefore, this study's primary purpose was to explore the mechanisms by which LINC01123 regulates the immune escape and progression of HNSCC. This study confirmed that LINC01123 is competitively bound to miR-214-3p, and miR-214-3p specifically targets B7-H3. The effects of LINC01123, B7-H3, and miR-214-3p on tumor progression, CD8+T-cell-mediated immune response, and the tumorigenicity of HNSCC in vitro and in vivo were examined through the downregulation or upregulation of LINC01123, B7-H3, and miR-214-3p. Our results indicated that LINC01123 and B7-H3 were highly expressed in HNSCC and are associated with poor prognosis in patients. Notably, overexpression of LINC01123 or B7-H3 or downregulation of miR-214-3p inhibited the function of CD8+T cells and promoted the progression of HNSCC. Therefore, LINC01123 acts as a miR-214-3p sponge to inhibit the activation of CD8+T cells and promote the progression of HNSCC by upregulating B7-H3.


Assuntos
Antígenos B7 , Neoplasias de Cabeça e Pescoço , MicroRNAs , RNA Longo não Codificante , Carcinoma de Células Escamosas de Cabeça e Pescoço , Antígenos B7/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA