Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2306177120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871210

RESUMO

Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.


Assuntos
Bacillus thuringiensis , Gleiquênias , Inseticidas , Traqueófitas , Animais , Inseticidas/metabolismo , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Controle Biológico de Vetores , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Traqueófitas/metabolismo , Zea mays/metabolismo
2.
Phytopathology ; 105(10): 1362-72, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25871857

RESUMO

Heterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H. glycines produces an arsenal of effector proteins in the secretory esophageal gland cells. More than 60 H. glycines candidate effectors were identified in previous gland-cell-mining projects. However, it is likely that additional candidate effectors remained unidentified. With the goal of identifying remaining H. glycines candidate effectors, we constructed and sequenced a large gland cell cDNA library resulting in 11,814 expressed sequence tags. After bioinformatic filtering for candidate effectors using a number of criteria, in situ hybridizations were performed in H. glycines whole-mount specimens to identify candidate effectors whose mRNA exclusively accumulated in the esophageal gland cells, which is a hallmark of many nematode effectors. This approach resulted in the identification of 18 new H. glycines esophageal gland-cell-specific candidate effectors. Of these candidate effectors, 11 sequences were pioneers without similarities to known proteins while 7 sequences had similarities to functionally annotated proteins in databases. These putative homologies provided the bases for the development of hypotheses about potential functions in the parasitism process.


Assuntos
Glycine max/parasitologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Sequência de Bases , Biblioteca Gênica , Células Gigantes , Interações Hospedeiro-Parasita , Dados de Sequência Molecular , Raízes de Plantas/parasitologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA