Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 239
Filtrar
1.
Front Immunol ; 15: 1433898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301019

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by synovitis, degradation of articular cartilage, and bone destruction. Fibroblast-like synoviocytes (FLS) play a central role in RA, producing a significant amount of inflammatory mediators such as tumor necrosis factor(TNF)-α and IL-6, which promote inflammatory responses within the joints. Moreover, FLS exhibit tumor-like behavior, including aggressive proliferation and enhanced anti-apoptotic capabilities, which collectively drive chronic inflammation and joint damage in RA. TNF is a major pro-inflammatory cytokine that mediates a series of signaling pathways through its receptor TNFR1, including NF-κB and MAPK pathways, which are crucial for inflammation and cell survival in RA. The abnormal proliferation and anti-apoptotic characteristics of FLS in RA may result from dysregulation in TNF-mediated cell death pathways such as apoptosis and necroptosis. Ubiquitination is a critical post-translational modification regulating these signaling pathways. E3 ubiquitin ligases, such as cIAP1/2, promote the ubiquitination and degradation of target proteins within the TNF receptor complex, modulating the signaling proteins. The high expression of the BIRC3 gene and its encoded protein, cIAP2, in RA regulates various cellular processes, including apoptosis, inflammatory signaling, immune response, MAPK signaling, and cell proliferation, thereby promoting FLS survival and inflammatory responses. Inhibiting BIRC3 expression can reduce the secretion of inflammatory cytokines by RA-FLS under both basal and inflammatory conditions and inhibit their proliferation. Although BIRC3 inhibitors show potential in RA treatment, their possible side effects must be carefully considered. Further research into the specific mechanisms of BIRC3, including its roles in cell signaling, apoptosis regulation, and immune evasion, is crucial for identifying new therapeutic targets and strategies.


Assuntos
Artrite Reumatoide , Proteína 3 com Repetições IAP de Baculovírus , Proliferação de Células , Fibroblastos , Transdução de Sinais , Sinoviócitos , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Sinoviócitos/imunologia , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Proteína 3 com Repetições IAP de Baculovírus/genética , Fator de Necrose Tumoral alfa/metabolismo , Fibroblastos/metabolismo , Apoptose , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
J Formos Med Assoc ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39174397

RESUMO

The 2023 consensus from the Taiwanese Dermatological Association (TDA) and Taiwan Lung Cancer Society (TLCS) addresses the management of tyrosine kinase inhibitor (TKI)-induced skin toxicities in non-small cell lung cancer (NSCLC). Providing a comprehensive overview, the consensus reflects recent advances in understanding causes and developmental processes of TKI-related skin toxicities. Aimed at guiding clinicians in Taiwan, the consensus integrates new treatment perspectives while incorporating experiences from local dermatology experts. Recommendations underwent a voting process, achieving consensus when 75% or more of experts agreed, leading to their inclusion. Approved by over 90% of participants, the recommended treatment algorithms for major skin toxicities offer valuable insights for clinicians managing TKI-associated effects in NSCLC patients.

4.
Nutr Diabetes ; 14(1): 65, 2024 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152116

RESUMO

BACKGROUND: Diet and gut microbiota contribute to non-alcoholic steatohepatitis (NASH) progression. High-fat diets (HFDs) change gut microbiota compositions, induce gut dysbiosis, and intestinal barrier leakage, which facilitates portal influx of pathogen-associated molecular patterns including lipopolysaccharides (LPS) to the liver and triggers inflammation in NASH. Current therapeutic drugs for NASH have adverse side effects; however, several foods and herbs that exhibit hepatoprotection could be an alternative method to prevent NASH. METHODS: We investigated ginger essential oil (GEO) against palm oil-containing HFDs in LPS-injected murine NASH model. RESULTS: GEO reduced plasma alanine aminotransferase levels and hepatic pro-inflammatory cytokine levels; and increased antioxidant catalase, glutathione reductase, and glutathione levels to prevent NASH. GEO alleviated hepatic inflammation through mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome and LPS/Toll-like receptor four (TLR4) signaling pathways. GEO further increased beneficial bacterial abundance and reduced NASH-associated bacterial abundance. CONCLUSION: This study demonstrated that GEO prevents NASH progression which is probably associated with the alterations of gut microbiota and inhibition of the LPS/TLR4/NF-κB pathway. Hence, GEO may offer a promising application as a dietary supplement for the prevention of NASH.


Assuntos
Microbioma Gastrointestinal , Inflamassomos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Óleos Voláteis , Transdução de Sinais , Receptor 4 Toll-Like , Zingiber officinale , Animais , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Camundongos , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Fígado/metabolismo , Fígado/efeitos dos fármacos , Modelos Animais de Doenças
5.
PLoS One ; 19(8): e0309245, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190688

RESUMO

CD19-targeted chimeric antigen receptor (CAR) T cell therapies have driven a paradigm shift in the treatment of relapsed/refractory B-cell malignancies. However, >50% of CD19-CAR-T-treated patients experience progressive disease mainly due to antigen escape and low persistence. Clinical prognosis is heavily influenced by CAR-T cell function and systemic cytokine toxicities. Furthermore, it remains a challenge to efficiently, cost-effectively, and consistently manufacture clinically relevant numbers of virally engineered CAR-T cells. Using a highly efficient piggyBac transposon-based vector, Quantum pBac™ (qPB), we developed a virus-free cell-engineering system for development and production of multiplex CAR-T therapies. Here, we demonstrate in vitro and in vivo that consistent, robust and functional CD20/CD19 dual-targeted CAR-T stem cell memory (CAR-TSCM) cells can be efficiently produced for clinical application using qPB™. In particular, we showed that qPB™-manufactured CAR-T cells from cancer patients expanded efficiently, rapidly eradicated tumors, and can be safely controlled via an iCasp9 suicide gene-inducing drug. Therefore, the simplicity of manufacturing multiplex CAR-T cells using the qPB™ system has the potential to improve efficacy and broaden the accessibility of CAR-T therapies.


Assuntos
Antígenos CD19 , Antígenos CD20 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Antígenos CD19/imunologia , Humanos , Antígenos CD20/imunologia , Antígenos CD20/genética , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Animais , Camundongos , Engenharia Celular/métodos , Linfócitos T/imunologia , Linhagem Celular Tumoral
7.
Acta Pharmacol Sin ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020084

RESUMO

Ferroptosis is an iron-dependent programmed cell death process that involves lipid oxidation via the Fenton reaction to produce lipid peroxides, causing disruption of the lipid bilayer, which is essential for cellular survival. Ferroptosis has been implicated in the occurrence and treatment response of various types of cancer, and targeting ferroptosis has emerged as a promising strategy for cancer therapy. However, cancer cells can escape cellular ferroptosis by activating or remodeling various signaling pathways, including oxidative stress pathways, thereby limiting the efficacy of ferroptosis-activating targeted therapy. The key anti-oxidative transcription factor, nuclear factor E2 related factor 2 (Nrf2 or NFE2L2), plays a dominant role in defense machinery by reprogramming the iron, intermediate, and glutathione peroxidase 4 (GPX4)-related network and the antioxidant system to attenuate ferroptosis. In this review, we summarize the recent advances in the regulation and function of Nrf2 signaling in ferroptosis-activated cancer therapy and explore the prospect of combining Nrf2 inhibitors and ferroptosis inducers as a promising cancer treatment strategy.

9.
Vaccine ; 42(24): 126075, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38897892

RESUMO

BACKGROUND: Reactivation of the latent varicella-zoster virus can cause herpes zoster (HZ) infection, and renal transplant recipients undergoing immunosuppressive therapy are particularly susceptible to this condition. This study aims to evaluate the potential increase in HZ incidence following influenza vaccination among this specific patient population. METHODS: This study was a population-based, retrospective, self-controlled case series. Data were retrieved from Taiwan's National Health Insurance Research Database spanning the years 2008 to 2017. Patients diagnosed with HZ within a 6-month period before and after receiving the influenza vaccine were eligible for inclusion. Two distinct time intervals were defined for analysis: the initial 15 days and 30 days following vaccination were categorized as risk intervals, while all other periods served as control intervals. Incidence rate ratios (IRRs) were computed to compare HZ incidence during the risk intervals with that during the control intervals. RESULTS: This study encompassed a cohort of 4,222 renal transplant recipients who had received the influenza vaccine. Among this group, 67 recipients were subsequently diagnosed with HZ. The IRR during both the initial 15 days (IRR = 0.63; 95 % CI, 0.23-1.89) and the first 30 days (IRR = 1.50; 95 % CI, 0.71-3.16) following influenza vaccination did not demonstrate a statistically significant increase when compared to the post-exposure observation times. Comparable results were also observed when comparing these IRR values to the pre-exposure observation times. The subgroup analysis, stratified by age, sex, and underlying medical conditions (including cancer and autoimmune diseases), revealed that the IRRs did not exhibit statistically significant differences. CONCLUSIONS: No significant association between the influenza vaccine and an elevated risk of HZ was detected. The administration of annual influenza vaccines appears to be a reasonable practice for renal transplant recipients.


Assuntos
Herpes Zoster , Vacinas contra Influenza , Transplante de Rim , Humanos , Herpes Zoster/prevenção & controle , Herpes Zoster/epidemiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Transplante de Rim/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Taiwan/epidemiologia , Incidência , Idoso , Adulto Jovem , Transplantados/estatística & dados numéricos , Vacinação/efeitos adversos , Influenza Humana/prevenção & controle , Herpesvirus Humano 3/imunologia , Adolescente
10.
J Biomed Inform ; 156: 104684, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936566

RESUMO

OBJECTIVE: Comprehensive analysis of histopathology images and transcriptomics data enables the identification of candidate biomarkers and multimodal association patterns. Most existing multimodal data association studies are derived from extensions of the joint nonnegative matrix factorization model for identifying complex data associations, which can make full use of clinical prior information. However, the raw data were usually taken as the input without considering the underlying complex multi-subspace structure, influencing the subsequent integration analysis results. METHODS: This study proposed a deep-self reconstructed joint nonnegative matrix factorization (DSRJNMF) model to use self-expressive properties to reconstruct the raw data to characterize the similarity structure associated with clinical labels. Then, the sparsity, orthogonality, and regularization constraints constructed from prior information are added to the DSRJNMF model to determine the sparse set of biologically relevant features across modalities. RESULTS: The algorithm has been applied to identify the imaging genetic association of triple negative breast cancer (TNBC). Multilevel experimental results demonstrate that the proposed algorithm better estimates potential associations between pathological image features and miRNA-gene and identifies consistent multimodal imaging genetic biomarkers to guide the interpretation of TNBC. CONCLUSION: The propose method provides a novel idea of data association analysis oriented to complex diseases.


Assuntos
Algoritmos , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Genômica/métodos , Processamento de Imagem Assistida por Computador/métodos
11.
Photodiagnosis Photodyn Ther ; 48: 104231, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821238

RESUMO

BACKGROUND: Chordoma is a rare congenital low-grade malignant tumor characterized by infiltrative growth. It often tends to compress important intracranial nerves and blood vessels, making its surgical treatment extremely difficult. Besides, the efficacy of radiotherapy and chemotherapy is limited. The photosensitizer hematoporphyrin derivative (HPD) can emit red fluorescence under 405 nm excitation and produce reactive oxygen species for tumor therapy under 630 nm excitation. Herein, we investigated the effects of the photosensitizer hematoporphyrin derivative (HPD) on different cell lines of chordoma and xenograft tumors under 405 nm and 630 nm excitation. METHODS: The photosensitizer hematoporphyrin derivative (HPD) and Two different chordoma cell lines (U-CH1, JHC7) were used for the test. The in vitro experiments were as follows: (1) the fluorescence intensity emitted by chordoma cells excited by different 405 nm light intensities was observed under a confocal microscope; (2) the Cell Counting Kit-8 (CCK-8) assay was performed to detect the effects of different photosensitizer concentrations and 630 nm light energy densities on the activity of chordoma cells. In the in vivo experiments, (3) Fluorescence visualization of chordoma xenograft tumors injected with photosensitizer via tail vein under 405 nm excitation; (4) Impact of 630 nm excitation of photosensitizer on the growth of chordoma xenograft tumors. RESULTS: (1) The photosensitizers in chordoma cells and chordoma xenografts of nude mice were excited by 405 nm to emit red fluorescence; (2) 630 nm excitation photosensitizer reduces chordoma cell activity and inhibits chordoma xenograft tumor growth in chordoma nude mice. CONCLUSION: Photodynamic techniques mediated by the photosensitizer hematoporphyrin derivatives can be used for the diagnosis and treatment of chordoma.


Assuntos
Cordoma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Cordoma/tratamento farmacológico , Animais , Camundongos , Linhagem Celular Tumoral , Humanos , Derivado da Hematoporfirina/farmacologia , Camundongos Nus , Hematoporfirinas/farmacologia , Hematoporfirinas/uso terapêutico
12.
Immunotargets Ther ; 13: 259-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770264

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by the excessive proliferation of keratinocytes and heightened immune activation. Targeting pathogenic genes through small interfering RNA (siRNA) therapy represents a promising strategy for the treatment of psoriasis. This mini-review provides a comprehensive summary of siRNA research targeting the pathogenesis of psoriasis, covering aspects such as keratinocyte function, inflammatory cell roles, preclinical animal studies, and siRNA delivery mechanisms. It details recent advancements in RNA interference that modulate key factors including keratinocyte proliferation (Fibroblast Growth Factor Receptor 2, FGFR2), apoptosis (Interferon Alpha Inducible Protein 6, G1P3), differentiation (Grainyhead Like Transcription Factor 2, GRHL2), and angiogenesis (Vascular Endothelial Growth Factor, VEGF); immune cell infiltration and inflammation (Tumor Necrosis Factor-Alpha, TNF-α; Interleukin-17, IL-17); and signaling pathways (JAK-STAT, Nuclear Factor Kappa B, NF-κB) that govern immunopathology. Despite significant advances in siRNA-targeted treatments for psoriasis, several challenges persist. Continued scientific developments promise the creation of more effective and safer siRNA medications, potentially enhancing the quality of life for psoriasis patients and revolutionizing treatments for other diseases. This article focuses on the most recent research advancements in targeting the pathogenesis of psoriasis with siRNA and explores its future therapeutic prospects.

13.
BMC Med Genomics ; 17(1): 127, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730335

RESUMO

Colorectal cancer (CRC) is prone to metastasis and recurrence after surgery, which is one of the main causes for its poor treatment and prognosis. Therefore, it is essential to identify biomarkers associated with metastasis and recurrence in CRC. DNA methylation has a regulatory role in cancer metastasis, tumor immune microenvironment (TME), and prognosis and may be one of the most valuable biomarkers for predicting CRC metastasis and prognosis. We constructed a diagnostic model and nomogram that can effectively predict CRC metastasis based on the differential methylation CpG sites (DMCs) between metastatic and non-metastatic CRC patients. Then, we identified 17 DMCs associated with progression free survival (PFS) of CRC and constructed a prognostic model. The prognosis model based on 17 DMCs can predict the PFS of CRC with medium to high accuracy. The results of immunohistochemical analysis indicated that the protein expression levels of the genes involved in prognostic DMCs were different between normal and colorectal cancer tissues. According to the results of immune-related analysis, we found that the low-risk patients had better immunotherapy response. In addition, high risk scores were negatively correlated with high tumor mutation burden (TMB) levels, and patients with low TMB levels in the high-risk group had the worst PFS. Our work shows the clinical value of DNA methylation in predicting CRC metastasis and PFS, as well as their correlation with TME, immunotherapy, and TMB, which helps understand the changes of DNA methylation in CRC metastasis and improving the treatment and prognosis of CRC.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Metástase Neoplásica , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Prognóstico , Biomarcadores Tumorais/genética , Ilhas de CpG/genética , Microambiente Tumoral , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Nomogramas
14.
Front Immunol ; 15: 1394108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799455

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent synovial inflammation and progressive joint destruction. Macrophages are key effector cells that play a central role in RA pathogenesis through their ability to polarize into distinct functional phenotypes. An imbalance favoring pro-inflammatory M1 macrophages over anti-inflammatory M2 macrophages disrupts immune homeostasis and exacerbates joint inflammation. Multiple signaling pathways, including Notch, JAK/STAT, NF-κb, and MAPK, regulate macrophage polarization towards the M1 phenotype in RA. Metabolic reprogramming also contributes to this process, with M1 macrophages prioritizing glycolysis while M2 macrophages utilize oxidative phosphorylation. Redressing this imbalance by modulating macrophage polarization and metabolic state represents a promising therapeutic strategy. Furthermore, complex bidirectional interactions exist between synovial macrophages and fibroblast-like synoviocytes (FLS), forming a self-perpetuating inflammatory loop. Macrophage-derived factors promote aggressive phenotypes in FLS, while FLS-secreted mediators contribute to aberrant macrophage activation. Elucidating the signaling networks governing macrophage polarization, metabolic adaptations, and crosstalk with FLS is crucial to developing targeted therapies that can restore immune homeostasis and mitigate joint pathology in RA.


Assuntos
Artrite Reumatoide , Fibroblastos , Ativação de Macrófagos , Macrófagos , Transdução de Sinais , Membrana Sinovial , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/imunologia , Membrana Sinovial/patologia , Fibroblastos/metabolismo , Fibroblastos/imunologia , Animais , Ativação de Macrófagos/imunologia , Comunicação Celular/imunologia , Reprogramação Metabólica
15.
Angew Chem Int Ed Engl ; 63(23): e202404395, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577995

RESUMO

Reactive oxygen species (ROS) have become an effective tool for tumor treatment. The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) takes advantage of various ROS and enhances therapeutic effects. However, the activation of CDT usually occurs before PDT, which hinders the sustained maintenance of hydroxyl radicals (⋅OH) and reduces the treatment efficiency. Herein, we present a light-triggered nano-system based on molecular aggregation regulation for converting cancer therapy from PDT/photothermal therapy (PTT) to a long-lasting CDT. The ordered J-aggregation enhances the photodynamic properties of the cyanine moiety while simultaneously suppressing the chemodynamic capabilities of the copper-porphyrin moiety. Upon light irradiation, Cu-PCy JNPs demonstrate strong photodynamic and photothermal effects. Meanwhile, light triggers a rapid degradation of the cyanine backbone, leading to the destruction of the J-aggregation. As a result, a long-lasting CDT is sequentially activated, and the sustained generation of ⋅OH is observed for up to 48 hours, causing potent cellular oxidative stress and apoptosis. Due to their excellent tumor accumulation, Cu-PCy JNPs exhibit effective in vivo tumor ablation through the converting therapy. This work provides a new approach for effectively prolonging the chemodynamic activity in ROS-based cancer therapy.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Terapia Fototérmica , Animais , Humanos , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cobre/química , Cobre/farmacologia , Luz , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Carbocianinas/química , Carbocianinas/farmacologia , Sobrevivência Celular/efeitos dos fármacos
16.
J Colloid Interface Sci ; 666: 12-21, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38582040

RESUMO

In single-atom catalysts, the atomically dispersed metal sites are pivotal for oxygen molecule activation. We hypothesize that dispersing single Mn atoms on TiO2 nanosheets may improve the photocatalytic oxidation of formaldehyde (HCHO) in the gas phase under ambient conditions. Density function theory (DFT) and experimental experiments were carried out to single Mn atoms not only improved the transfer of localized electrons and photogenerated electrons but also enhanced the activation/dissociation of O2 to generate monoatomic oxygen ions (O-) as the final reactive oxygen species (ROS). In photocatalytic experiments, Mn/TiO2 photocatalyst removed 100 % of HCHO at a low concentration of 7.6 ppm, and reaching excellent mineralization efficiency of over 99.6 %. According to the proposed reaction mechanism, O2 spontaneously adsorbs onto the Mn/TiO2 surface, forming two adsorbed O- after electron donation into the π2p* antibonding orbitals of O2. The adsorbed O- then reacts with gaseous HCHO to produce the key intermediate dioxymethylene (DOM), finally fulfilling a more favorable oxidation process on the Mn/TiO2 surface. This research illustrates the key role of O- in HCHO oxidation and paves the way for practical HCHO removal using TiO2-based photocatalysts.

17.
Diagnostics (Basel) ; 14(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667495

RESUMO

A 54-year-old woman presented to an outpatient clinic with a recurrence of triple-negative breast cancer and multiple bone metastases. The patient had a large mass lesion of 10 cm on the sternum. She received the immune checkpoint inhibitors pembrolizumab and taxane. Initially, the patient responded excellently to treatment, but stopped pembrolizumab for grade IV skin toxicity with multiple ulcerative wounds over the bilateral leg and trunk. The lesions abated following administration of antibiotics and oral prednisolone for two months. After that, she was referred to the radiation oncology department for further treatment. She received radiotherapy for the sternum mass but stopped radiation at 42Gy/21 fractions for severe dyspnea and fever. Blood sampling found leukocytosis with neutrophil predominance. Chest radiography showed bilateral lung infiltration. Pulmonary CT scan yielded bilateral lung patchy consolidation compatible with radiation isodose-line. Bronchial lavage showed positive Pneumocystis jiroveci PCR. Dyspnea improved after titrating methylprednisolone within two days. The patient recovered well with TMP-SMX and glucocorticoids after the initiation of therapy.

18.
J Imaging Inform Med ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689151

RESUMO

Recurrences are frequent in nasopharyngeal carcinoma (NPC) despite high remission rates with treatment, leading to considerable morbidity. This study aimed to develop a prediction model for NPC survival by harnessing both pre- and post-treatment magnetic resonance imaging (MRI) radiomics in conjunction with clinical data, focusing on 3-year progression-free survival (PFS) as the primary outcome. Our comprehensive approach involved retrospective clinical and MRI data collection of 276 eligible NPC patients from three independent hospitals (180 in the training cohort, 46 in the validation cohort, and 50 in the external cohort) who underwent MRI scans twice, once within 2 months prior to treatment and once within 10 months after treatment. From the contrast-enhanced T1-weighted images before and after treatment, 3404 radiomics features were extracted. These features were not only derived from the primary lesion but also from the adjacent lymph nodes surrounding the tumor. We conducted appropriate feature selection pipelines, followed by Cox proportional hazards models for survival analysis. Model evaluation was performed using receiver operating characteristic (ROC) analysis, the Kaplan-Meier method, and nomogram construction. Our study unveiled several crucial predictors of NPC survival, notably highlighting the synergistic combination of pre- and post-treatment data in both clinical and radiomics assessments. Our prediction model demonstrated robust performance, with an accuracy of AUCs of 0.66 (95% CI: 0.536-0.779) in the training cohort, 0.717 (95% CI: 0.536-0.883) in the testing cohort, and 0.827 (95% CI: 0.684-0.948) in validation cohort in prognosticating patient outcomes. Our study presented a novel and effective prediction model for NPC survival, leveraging both pre- and post-treatment clinical data in conjunction with MRI features. Its constructed nomogram provides potentially significant implications for NPC research, offering clinicians a valuable tool for individualized treatment planning and patient counseling.

19.
Molecules ; 29(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38611874

RESUMO

Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.


Assuntos
Neoplasias Bucais , Humanos , Neoplasias Bucais/tratamento farmacológico , Antraquinonas , Apoptose , Autofagia , Endopeptidases
20.
Gut Microbes ; 16(1): 2300847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38439565

RESUMO

Dietary patterns and corresponding gut microbiota profiles are associated with various health conditions. A diet rich in polyphenols, primarily plant-based, has been shown to promote the growth of probiotic bacteria in the gastrointestinal tract, subsequently reducing the risk of metabolic disorders in the host. The beneficial effects of these bacteria are largely due to the specific metabolites they produce, such as short-chain fatty acids and membrane proteins. In this study, we employed a metabolomics-guided bioactive metabolite identification platform that included bioactivity testing using in vitro and in vivo assays to discover a bioactive metabolite produced from probiotic bacteria. Through this approach, we identified 5'-methylthioadenosine (MTA) as a probiotic bacterial-derived metabolite with anti-obesity properties. Furthermore, our findings indicate that MTA administration has several regulatory impacts on liver functions, including modulating fatty acid synthesis and glucose metabolism. The present study elucidates the intricate interplay between dietary habits, gut microbiota, and their resultant metabolites.


Assuntos
Desoxiadenosinas , Microbioma Gastrointestinal , Doenças Metabólicas , Tionucleosídeos , Humanos , Metionina , Bifidobacterium , Racemetionina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA