Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38867692

RESUMO

MOTIVATION: Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers. However, computational approaches for de novo macrocyclic peptide design remain largely unexplored. RESULTS: Here, we introduce HELM-GPT, a novel method that combines the strength of the hierarchical editing language for macromolecules (HELM) representation and generative pre-trained transformer (GPT) for de novo macrocyclic peptide design. Through reinforcement learning (RL), our experiments demonstrate that HELM-GPT has the ability to generate valid macrocyclic peptides and optimize their properties. Furthermore, we introduce a contrastive preference loss during the RL process, further enhanced the optimization performance. Finally, to co-optimize peptide permeability and KRAS binding affinity, we propose a step-by-step optimization strategy, demonstrating its effectiveness in generating molecules fulfilling both criteria. In conclusion, the HELM-GPT method can be used to identify novel macrocyclic peptides to target intracellular proteins. AVAILABILITY AND IMPLEMENTATION: The code and data of HELM-GPT are freely available on GitHub (https://github.com/charlesxu90/helm-gpt).


Assuntos
Peptídeos Cíclicos , Peptídeos Cíclicos/química , Biologia Computacional/métodos , Desenho de Fármacos , Peptídeos/química , Humanos , Algoritmos , Software
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36631407

RESUMO

Recently, peptide-based drugs have gained unprecedented interest in discovering and developing antifungal drugs due to their high efficacy, broad-spectrum activity, low toxicity and few side effects. However, it is time-consuming and expensive to identify antifungal peptides (AFPs) experimentally. Therefore, computational methods for accurately predicting AFPs are highly required. In this work, we develop AFP-MFL, a novel deep learning model that predicts AFPs only relying on peptide sequences without using any structural information. AFP-MFL first constructs comprehensive feature profiles of AFPs, including contextual semantic information derived from a pre-trained protein language model, evolutionary information, and physicochemical properties. Subsequently, the co-attention mechanism is utilized to integrate contextual semantic information with evolutionary information and physicochemical properties separately. Extensive experiments show that AFP-MFL outperforms state-of-the-art models on four independent test datasets. Furthermore, the SHAP method is employed to explore each feature contribution to the AFPs prediction. Finally, a user-friendly web server of the proposed AFP-MFL is developed and freely accessible at http://inner.wei-group.net/AFPMFL/, which can be considered as a powerful tool for the rapid screening and identification of novel AFPs.


Assuntos
Antifúngicos , alfa-Fetoproteínas , Antifúngicos/farmacologia , Algoritmos , Peptídeos/química , Biologia Computacional/métodos
3.
Bioinformatics ; 38(6): 1514-1524, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34999757

RESUMO

MOTIVATION: Recently, peptides have emerged as a promising class of pharmaceuticals for various diseases treatment poised between traditional small molecule drugs and therapeutic proteins. However, one of the key bottlenecks preventing them from therapeutic peptides is their toxicity toward human cells, and few available algorithms for predicting toxicity are specially designed for short-length peptides. RESULTS: We present ToxIBTL, a novel deep learning framework by utilizing the information bottleneck principle and transfer learning to predict the toxicity of peptides as well as proteins. Specifically, we use evolutionary information and physicochemical properties of peptide sequences and integrate the information bottleneck principle into a feature representation learning scheme, by which relevant information is retained and the redundant information is minimized in the obtained features. Moreover, transfer learning is introduced to transfer the common knowledge contained in proteins to peptides, which aims to improve the feature representation capability. Extensive experimental results demonstrate that ToxIBTL not only achieves a higher prediction performance than state-of-the-art methods on the peptide dataset, but also has a competitive performance on the protein dataset. Furthermore, a user-friendly online web server is established as the implementation of the proposed ToxIBTL. AVAILABILITY AND IMPLEMENTATION: The proposed ToxIBTL and data can be freely accessible at http://server.wei-group.net/ToxIBTL. Our source code is available at https://github.com/WLYLab/ToxIBTL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado de Máquina , Peptídeos , Humanos , Proteínas , Software , Algoritmos
4.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34117740

RESUMO

The prediction of peptide secondary structures is fundamentally important to reveal the functional mechanisms of peptides with potential applications as therapeutic molecules. In this study, we propose a multi-view deep learning method named Peptide Secondary Structure Prediction based on Multi-View Information, Restriction and Transfer learning (PSSP-MVIRT) for peptide secondary structure prediction. To sufficiently exploit discriminative information, we introduce a multi-view fusion strategy to integrate different information from multiple perspectives, including sequential information, evolutionary information and hidden state information, respectively, and generate a unified feature space. Moreover, we construct a hybrid network architecture of Convolutional Neural Network and Bi-directional Gated Recurrent Unit to extract global and local features of peptides. Furthermore, we utilize transfer learning to effectively alleviate the lack of training samples (peptides with experimentally validated structures). Comparative results on independent tests demonstrate that our proposed method significantly outperforms state-of-the-art methods. In particular, our method exhibits better performance at the segment level, suggesting the strong ability of our model in capturing local discriminative information. The case study also shows that our PSSP-MVIRT achieves promising and robust performance in the prediction of new peptide secondary structures. Importantly, we establish a webserver to implement the proposed method, which is currently accessible via http://server.malab.cn/PSSP-MVIRT. We expect it can be a useful tool for the researchers of interest, facilitating the wide use of our method.


Assuntos
Algoritmos , Biologia Computacional/métodos , Aprendizado Profundo , Modelos Moleculares , Peptídeos/química , Estrutura Secundária de Proteína , Bases de Dados de Proteínas , Reprodutibilidade dos Testes , Navegador
5.
Brief Bioinform ; 22(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-33822870

RESUMO

MOTIVATION: Peptides have recently emerged as promising therapeutic agents against various diseases. For both research and safety regulation purposes, it is of high importance to develop computational methods to accurately predict the potential toxicity of peptides within the vast number of candidate peptides. RESULTS: In this study, we proposed ATSE, a peptide toxicity predictor by exploiting structural and evolutionary information based on graph neural networks and attention mechanism. More specifically, it consists of four modules: (i) a sequence processing module for converting peptide sequences to molecular graphs and evolutionary profiles, (ii) a feature extraction module designed to learn discriminative features from graph structural information and evolutionary information, (iii) an attention module employed to optimize the features and (iv) an output module determining a peptide as toxic or non-toxic, using optimized features from the attention module. CONCLUSION: Comparative studies demonstrate that the proposed ATSE significantly outperforms all other competing methods. We found that structural information is complementary to the evolutionary information, effectively improving the predictive performance. Importantly, the data-driven features learned by ATSE can be interpreted and visualized, providing additional information for further analysis. Moreover, we present a user-friendly online computational platform that implements the proposed ATSE, which is now available at http://server.malab.cn/ATSE. We expect that it can be a powerful and useful tool for researchers of interest.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Redes Neurais de Computação , Peptídeos/toxicidade , Software , Bases de Dados de Proteínas , Conjuntos de Dados como Assunto , Evolução Molecular , Humanos , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA