Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 22(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38921566

RESUMO

Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), ß, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900-15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2ß1, α10ß1, and α11ß1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine.


Assuntos
Colágeno , Decapodiformes , Peptídeos , Pele , Animais , Humanos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colágeno/metabolismo , Decapodiformes/química , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/toxicidade , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Pele/efeitos dos fármacos , Pele/lesões , Pele/metabolismo , Células-Tronco/efeitos dos fármacos
2.
Int J Biol Macromol ; 247: 125772, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429348

RESUMO

Collagens from marine sources have been used widely in food, cosmetics and tissue engineering application due to their excellent functional and biological properties. In the present study, a novel protein, collagen from iris squid skin (SSC) was characterized, grafted with polyethylene-glycol (PEG) and Acid-Green 20 (AG) and was investigated the molecular signaling pathways in L-929 fibroblast cells along with their structural peptide analogs. SDS-PAGE and IR spectrum of SSC analysis showed the typical structure of type I collagen. The fibroblast proliferation was evaluated for SSC, SSC grafted PEG (SSC-PEG) and their structural analogs including Gly-Pro-Leu-Gly-Leu-Leu (PEP1), Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu (PEP2), Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu-Gly-Pro-Leu (PEP3) and Gly-Pro-Leu-Gly-Leu-Leu-Gly-Phe-Leu-Gly-Pro-Leu-Gly-Leu-Ser (PEP4). The optimal concentration of SSC and its derivative was 0.07 µ mol/L. The fibroblast growth-promoting factors were promoted by all the treatment groups by accelerating the PI3K/AKT and Ras/RAF/MAPK signaling pathways in L-929 cells, and inhibiting the secretion of apoptotic factors. Compared to the control group, mRNA and protein expression of AKT in the PI3K/AKT and Ras in Ras/RAF/MAPK signaling pathway were accelerated significantly by PEP4, respectively, while the Bax value was significantly lower (P < 0.01). The promoting effect of PEP1, PEP2, PEP3 and PEP4 on L-929 cells was closely related to the length of the peptides. Therefore, this study disclosed that PEP1, PEP2, PEP3 and PEP4 were novel analogs that greatly promote the proliferation of L-929 cells through PI3K/AKT and Ras/RAF/MAPK signaling pathways.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sequência de Aminoácidos , Peptídeos/farmacologia , Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Colágeno , Fibroblastos/metabolismo , Proliferação de Células
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298062

RESUMO

Marine collagen (MC) has recently attracted more attention in tissue engineering as a biomaterial substitute due to its significant role in cellular signaling mechanisms, especially in mesenchymal stem cells (MSCs). However, the actual signaling mechanism of MC in MSC growth, which is highly influenced by their molecular pattern, is poorly understood. Hence, we investigated the integrin receptors (α1ß1, α2ß1, α10ß1, and α11ß1) binding mechanism and proliferation of MCs (blacktip reef shark collagen (BSC) and blue shark collagen (SC)) compared to bovine collagen (BC) on MSCs behavior through functionalized collagen molecule probing for the first time. The results showed that BSC and SC had higher proliferation rates and accelerated scratch wound healing by increasing migratory rates of MSCs. Cell adhesion and spreading results demonstrated that MC had a better capacity to anchor MSCs and maintain cell morphology than controls. Living cell observations showed that BSC was gradually assembled by cells into the ECM network within 24 h. Interestingly, qRT-PCR and ELISA revealed that the proliferative effect of MC was triggered by interacting with specific integrin receptors such as α2ß1, α10ß1, and α11ß1 of MSCs. Accordingly, BSC accelerated MSCs' growth, adhesion, shape, and spreading by interacting with specific integrin subunits (α2 and ß1) and thereby triggering further signaling cascade mechanisms.


Assuntos
Células-Tronco Mesenquimais , Tubarões , Animais , Bovinos , Camundongos , Integrinas/metabolismo , Colágeno/metabolismo , Adesão Celular , Células-Tronco Mesenquimais/metabolismo , Tubarões/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-33488754

RESUMO

BACKGROUND: Yisui Qinghuang powder (YSQHP) is an effective traditional Chinese medicinal formulation used for the treatment of myelodysplastic syndromes (MDS). However, its pharmacological mechanism of action is unclear. MATERIALS AND METHODS: In this study, the active compounds of YSQHP were screened using the traditional Chinese medicine systems pharmacology (TCMSP) and HerDing databases, and the putative target genes of YSQHP were predicted using the STITCH and DrugBank databases. Then, we further screened the correlative biotargets of YSQHP and MDS. Finally, the compound-target-disease (C-T-D) network was conducted using Cytoscape, while GO and KEGG analyses were conducted using R software. Furthermore, DDI-CPI, a web molecular docking analysis tool, was used to verify potential targets and pathways. Finally, binding site analysis was performed to identify core targets using MOE software. RESULTS: Our results identified 19 active compounds and 273 putative target genes of YSQHP. The findings of the C-T-D network revealed that Rb1, CASP3, BCL2, and MAPK3 showed the most number of interactions, whereas indirubin, tryptanthrin, G-Rg1, G-Rb1, and G-Rh2 showed the most number of potential targets. The GO analysis showed that 17 proteins were related with STPK activity, PUP ligase binding, and kinase regulator activity. The KEGG analysis showed that PI3K/AKT, apoptosis, and the p53 pathways were the main pathways involved. DDI-CPI identified the top 25 proteins related with PI3K/AKT, apoptosis, and the p53 pathways. CASP8, GSK3B, PRKCA, and VEGFR2 were identified as the correlative biotargets of DDI-CPI and PPI, and their binding sites were found to be indirubin, G-Rh2, and G-Rf. CONCLUSION: Taken together, our results revealed that YSQHP likely exerts its antitumor effects by binding to CASP8, GSK3B, PRKCA, and VEGFR2 and by regulating the apoptosis, p53, and PI3K/AKT pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA