Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
J Environ Manage ; 370: 122733, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39378805

RESUMO

High-solid anaerobic digestion (HSAD) of kitchen waste was generally faced to the common problems such as systemic acidification, prolonged lag-phase time and low methane production. Iron-carbon micro-electrolysis (ICME) materials exhibited advantages that porous structure, large specific surface area and excellent conductivity. It was beneficial for organic compounds to hydrolysis. Moreover, ICME materials could establish direct interspecies electron transfer (DIET) pathway between bacteria and methanogens. ICME materials were commonly used to enhance the AD of wastewater, but they were rarely applied to HSAD of kitchen waste. In this study, ICME materials were utilized to enhance HSAD of kitchen waste at different solid content conditions. The results showed that the highest cumulative biogas yield (705.23 mL/g VS) was obtained in the experimental group (TS = 10%), which was 94.15% higher than that of the control group. At the same time, the addiction of ICME could shorten lag-phase time. Electrochemical characteristics and XPS analysis showed that ICME materials promoted the release of Fe2+ in the AD system and acceleration of direct interspecies electron transfer between microorganisms. Microbial community analysis showed that ICME materials enriched electroactive bacteria (Proteiniphilum), Methanosarcina, Methanobrevibacter and Methanofollis. Functional gene prediction revealed that ICME materials increased the relative abundance of carbohydrate transport and metabolism and coenzyme transport and metabolism. It provided a potential measure to treat kitchen waste.

2.
J Mater Chem B ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380332

RESUMO

Cancer, a pressing global health challenge, is characterized by its rapid onset and high mortality rates. Conventional treatment methods prove insufficient in achieving the desired therapeutic outcomes, underscoring the critical need to identify an effective and safe approach for cancer treatment. In this study, a copper-doped nanoparticle known as Cu2+-DOX@ZIF-90 is designed by incorporating copper(II) (Cu(II)) and encapsulating doxorubicin (DOX) within ZIF-90. Leveraging the elevated ATP levels in cancer cells relative to normal cells, Cu2+-DOX@ZIF-90 undergoes intracellular degradation, leading to the release of DOX and Cu(II). DOX, a traditional chemotherapy drug for clinical use, induces apoptosis in cancer cells. Cu(II) interacts with glutathione (GSH) to generate Cu(I), catalyzing H2O2 to produce ˙OH, thereby prompting apoptosis in cancer cells. Concurrently, the reduction of GSH enhances the therapeutic effect of chemodynamic therapy (CDT). Furthermore, Cu(II) triggers the aggregation of lipoylated mitochondrial proteins, leading to the formation of DLAT oligomers and ultimately promoting cuproptosis in cancer cells. In vivo experimental findings demonstrate that Cu2+-DOX@ZIF-90 does not cause damage to normal tissues and organs in tumor-bearing mice, with a notable tumor inhibition rate of 86.18%. This synergistic approach, combining chemotherapy, CDT, and cuproptosis, holds significant promise for the effective and safe treatment of cancer.

3.
Gland Surg ; 13(9): 1575-1587, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39421051

RESUMO

Background: Breast cancer is a common and complex disease, with various clinical features affecting prognosis. Accurate prediction of prognosis is essential for guiding personalized treatment strategies. This study aimed to develop machine learning models for predicting prognosis in breast cancer patients using retrospective data. Methods: A total of 6,477 patients from Affiliated Sir Run Run Shaw Hospital were included, and their electronic medical records (EMRs) were thoroughly examined to identify 15 clinical features significantly associated with breast cancer survival. We employed eight different machine learning algorithms, including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost), to develop and evaluate the predictive performance of the models. In addition, to investigate the sensitivity of different training/testing set radio to model performance, we examined five sets of ratios: 50:50, 60:40, 70:30, 80:20, 90:10. Results: Among these models, XGBoost demonstrated the highest performance with receiver operating characteristic (ROC) area under the curve (AUC) of 0.813, accuracy of 0.739, sensitivity of 0.815, and specificity of 0.735. Further statistical analysis identified several significant predictors of prognosis, including age, tumor size, lymph node status, and hormone receptor status. The XGBoost model was found to exhibit superior predictive power compared to established prognostic models such as the Nottingham Prognostic Index (NPI) and Predict Breast. Based on the successful performance of the XGBoost model, we developed a prognosis prediction tool specifically designed for breast cancer, providing valuable insights to clinicians, and aiding them in making informed treatment decisions tailored to individual patients. Conclusions: Our study highlights the potential of machine learning models in accurately predicting prognosis for breast cancer patients, ultimately facilitating personalized treatment strategies. Further research and validation are warranted to fully integrate these models into clinical practice.

4.
Nanoscale ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420780

RESUMO

The combination of chemotherapy and photodynamic therapy holds immense potential for achieving synergistic anti-tumor efficacy. However, challenges such as poor stability and premature drug release prior to reaching tumor sites impede the widespread application of this synergistic therapeutic approach. In this study, a novel ATP-responsive NIR fluorescence nanosystem (CDZ) for imaging-guided chemotherapy and PDT has been developed. This nanosystem, based on ZIF-90, encapsulates the chemotherapy drug doxorubicin (DOX) and the photosensitizer asymmetrical cyanine dye Cy through self-assembly. The obtained nanosystem CDZ could efficiently avoid premature drug leakage in the blood circulation due to its high stability in the physiological environment and accumulates at the tumor sites via the enhanced permeability and retention (EPR) effect. Upon uptake by tumor cells, the skeleton structure of CDZ is disrupted by overexpressed ATP levels, leading to the release of DOX, which inhibits cancer cell proliferation and induces cell death. Additionally, the released photosensitizer Cy emits strong NIR fluorescence signals, enabling real-time imaging of ATP levels in tumors. Moreover, under NIR light irradiation, this nanosystem generates high levels of ROS, achieving effective phototherapy even in deeper tumor regions. In tumor model mice, CDZ demonstrated a high rate of tumor inhibition without causing damage to major organs. This ZIF-based NIR fluorescence nanosystem, combining chemotherapy and photodynamic therapy, holds promise as a solution for treating and monitoring cancer without the associated risks of resistance and systemic toxicity.

5.
Front Pediatr ; 12: 1416189, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296668

RESUMO

Mycoplasma pneumoniae is the primary pathogen causing community-acquired pneumonia in children, accounting for approximately 10%-40% of cases. It can lead to various extrapulmonary complications, including acute pancreatitis, which has been reported in approximately 30 cases to date. Here, we report a 4-year-old girl who presented with fever, cough, and elevated levels of M. pneumoniae IgM antibodies, followed by the onset of abdominal pain, elevated lipase, and elevated blood and urine amylase. Abdominal CT implied diffuse inflammation of the pancreas. Serum inflammatory cytokines, such as interleukin (IL)-2, IL-6, IL-17A, tumor necrosis factor, and interferon-gamma, were elevated. After excluding other causes, it was determined that M. pneumoniae infection was the cause of her acute pancreatitis. She was treated with macrolides and glucocorticoids and ultimately made a full recovery. Therefore, acute pancreatitis should be included in the differential diagnosis for patients with M. pneumoniae infection who present with abdominal pain. Inflammatory cytokines may play a role in mediating pancreatic damage.

6.
Eur J Med Res ; 29(1): 448, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223643

RESUMO

BACKGROUND: NUP98 rearrangements (NUP98-r) are rare but overrepresented mutations in pediatric acute myeloid leukemia (AML) patients. NUP98-r is often associated with chemotherapy resistance and a particularly poor prognosis. Therefore, characterizing pediatric AML with NUP98-r to identify aberrations is critically important. METHODS: Here, we retrospectively analyzed the clinicopathological features, genomic and transcriptomic landscapes, treatments, and outcomes of pediatric patients with AML. RESULTS: Nine patients with NUP98-r mutations were identified in our cohort of 142 patients. Ten mutated genes were detected in patients with NUP98-r. The frequency of FLT3-ITD mutations differed significantly between the groups harboring NUP98-r and those without NUP98-r (P = 0.035). Unsupervised hierarchical clustering via RNA sequencing data from 21 AML patients revealed that NUP98-r samples clustered together, strongly suggesting a distinct subtype. Compared with that in the non-NUP98-r fusion and no fusion groups, CMAHP expression was significantly upregulated in the NUP98-r samples (P < 0.001 and P = 0.001, respectively). Multivariate Cox regression analyses demonstrated that patients harboring NUP98-r (P < 0.001) and WT1 mutations (P = 0.030) had worse relapse-free survival, and patients harboring NUP98-r (P < 0.008) presented lower overall survival. CONCLUSIONS: These investigations contribute to the understanding of the molecular characteristics, risk stratification, and prognostic evaluation of pediatric AML patients.


Assuntos
Leucemia Mieloide Aguda , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Criança , Feminino , Masculino , Pré-Escolar , Adolescente , Lactente , Mutação , Estudos Retrospectivos , Transcriptoma/genética , Rearranjo Gênico , Prognóstico
7.
Exp Mol Med ; 56(5): 1107-1122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689083

RESUMO

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.


Assuntos
Biopterinas , GTP Cicloidrolase , Lesão Pulmonar , Espécies Reativas de Oxigênio , Animais , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Lesão Pulmonar/metabolismo , Lesão Pulmonar/etiologia , GTP Cicloidrolase/metabolismo , GTP Cicloidrolase/genética , Humanos , Tolerância a Radiação/genética , Lactato Desidrogenase 5/metabolismo , Camundongos Knockout , Óxido Nítrico/metabolismo , L-Lactato Desidrogenase/metabolismo , L-Lactato Desidrogenase/genética , Processamento de Proteína Pós-Traducional , Radiação Ionizante
8.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína-Arginina N-Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia , Arginina
9.
Curr Med Imaging ; 20: e15734056289252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494937

RESUMO

BACKGROUND: Residual breast tumors may remain after vacuum-assisted excisional biopsy (VAEB). OBJECTIVE: To determine the incidence of residual breast tumors in patients after VAEB and the efficacy of magnetic resonance imaging (MRI) in detecting these tumors. METHODS: This retrospective analysis examined patients who received VAEB before a diagnosis of breast cancer (BC) at our hospital from 2015 to 2019. The incidence of residual tumors after VAEB was determined by MRI and pathological examination. The diagnostic value of MRI in detecting residual tumors was determined for all patients and different subgroups. Logistic regression analysis was used to identify factors associated with residual tumors. RESULTS: We examined 147 patients and obtained pathological samples from 146 patients, including 103 (70.5%) with residual tumors and 43 (29.5%) without residual tumors. The MRI examinations demonstrated the complete tumor resection rate was 48.9%. Compared to the pathological results, MRI had a positive predictive value of 77.8%, negative predictive value of 48.8%, specificity of 65.6%, and sensitivity of 60.7%. Further analysis indicated that MRI had moderate accuracies for patients with stage pT-1 (71.9%), stage pTNM-IA (73.1%), and luminal B subtype (78.3%). Binary logistic regression analysis showed that the risk of tumor residue correlated with the pathological stage. CONCLUSION: Tumor residue is common after VAEB, and MRI has limited accuracy in detecting these residual tumors. However, for small breast tumors and luminal B subtype BC, MRI had higher accuracy in the detection of residual tumors. The risk of tumor residue is closely associated with the pathological stage.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Neoplasia Residual , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasia Residual/diagnóstico por imagem , Adulto , Idoso , Vácuo , Sensibilidade e Especificidade , Biópsia/métodos , Valor Preditivo dos Testes
10.
Waste Manag ; 179: 110-119, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38471249

RESUMO

Toxic substances, like fluoride salts present in spent cathode carbon (SCC), have been a great risk to the environment and public health. Our approach involves alkali leaching to eliminate soluble fluoride, followed by microwave hydrothermal acid leaching to efficiently remove insoluble CaF2 from SCC. The optimized conditions, including a temperature of 353 K, a solid-liquid ratio of 1:20, and a 60-minute reaction time, resulted in an impressive 95.6 % removal of fluoride from SCC. Various characterization techniques were employed to analyze the composition, micro-morphology, and elemental content of the materials before and after the leaching process. Furthermore, critical process parameters on the leaching separation of insoluble CaF2 during microwave hydrothermal acid leaching were systematically investigated. The study removal mechanism revealed the transformation of insoluble CaF2 in the process of microwave oxidation insertion-hydrothermal acid leaching for SCC. The kinetic characteristics of the two-stage leaching process of CaF2 at different temperatures were analyzed according to the shrinkage kernel model. The results indicate that the two-stage leaching process of CaF2 is affected by mixing control and by diffusion control, severally. The expansion of the graphite flake layer of SCC through oxidative intercalation was identified as a critical process for the thorough removal of CaF2. Microwave hydrothermal acid leaching demonstrated a 17 % improvement over traditional hydrothermal acid leaching within the same reaction time, showcasing a noteworthy enhancement in fluoride removal. Consequently, the microwave oxidizing intercalation-hydrothermal acid leaching treatment of SCC, as explored in this study, offers an effective approach for achieving deep defluoridation of SCC.


Assuntos
Alumínio , Fluoreto de Cálcio , Ácidos Sulfúricos , Carbono , Fluoretos , Micro-Ondas
11.
Infect Genet Evol ; 120: 105575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403034

RESUMO

Mucormycosis is receiving much more attention because of its high morbidity and extremely high mortality rate in immunosuppressed populations. In this study, we isolated a Cunnignhamella bertholletiae Z2 strain from a skin lesion of a 14 year, 9 months old girl with acute lymphoblastic leukemia who die of infection from the Z2 strain. Genome sequencing was performed after isolation and amplification of the Z2 strain to reveal potential virulence factors and pathogenic mechanisms. The results showed that the genome size of the Z2 strain is 30.9 Mb with 9213 genes. Mucoral specific virulence factor genes found are ARF, CalN, and CoTH, while no gliotoxin biosynthesis gene cluster was found, which is a known virulence factor in Aspergillus fumigatus adapted to the environment. The Z2 strain was found to have 69 cytochrome P450 enzymes, which are potential drug resistant targets. Sensitivity testing of Z2 showed it was only inhibited by amphotericin B and posaconazole. Detailed genomic information of the C. bertholletiae Z2 strain may provide useful data for treatment.


Assuntos
Antifúngicos , Cunninghamella , Sistema Enzimático do Citocromo P-450 , Genoma Fúngico , Mucormicose , Sistema Enzimático do Citocromo P-450/genética , Mucormicose/microbiologia , Feminino , Humanos , Cunninghamella/genética , Antifúngicos/farmacologia , Adolescente , Fatores de Virulência/genética , Sequenciamento Completo do Genoma , Filogenia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
12.
Cancers (Basel) ; 16(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339405

RESUMO

Small extracellular vesicles (sEVs) contain lipids, proteins and nucleic acids, which often resemble their cells of origin. Therefore, plasma sEVs are considered valuable resources for cancer biomarker development. However, previous efforts have been largely focused on the level of proteins and miRNAs in plasma sEVs, and the post-translational modifications of sEV proteins, such as arginine methylation, have not been explored. Protein arginine methylation, a relatively stable post-translational modification, is a newly described molecular feature of PDAC. The present study examined arginine methylation patterns in plasma sEVs derived from patients with early-stage PDAC (n = 23) and matched controls. By utilizing the arginine methylation-specific antibodies for western blotting, we found that protein arginine methylation patterns in plasma sEVs are altered in patients with early-stage PDAC. Specifically, we observed a reduction in the level of symmetric dimethyl arginine (SDMA) in plasma sEV proteins derived from patients with early- and late-stage PDAC. Importantly, immunoprecipitation followed by proteomics analysis identified a number of arginine-methylated proteins exclusively present in plasma sEVs derived from patients with early-stage PDAC. These results indicate that arginine methylation patterns in plasma sEVs are potential indicators of PDAC, a new concept meriting further investigation.

13.
Leuk Lymphoma ; 65(1): 91-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37820046

RESUMO

Two hundred and thirty-one acute lymphoblastic leukemia (ALL) children with 1376 high-dose methotrexate (HD-MTX) courses (3-5 g/m2) were enrolled to analyze the influence of the plasma MTX concentration (CMTX) in ALL. The 24-h target peak CMTX (C24h) was set at 33 µmol/l for low-risk (LR) and 65 µmol/l for intermediate/high-risk (IR/HR) groups. The median C24h was 42.0 µmol/l and 69.7 µmol/l for LR and IR/HR groups, respectively. MTX excretion delay was observed in 14.6% of courses, which was more frequent in IR/HR groups (56.9% vs. LR group 40.2%, p = .014) and T-ALL patients (82.6% vs. B-ALL 47.1%, p = .001). MTX-related toxicities were more common in courses with MTX excretion delay. However, survival between the patients who failed to reach the target C24h or not, with or without MTX excretion delay, was comparable. These findings suggest that, owing to the effectiveness of risk stratification chemotherapy, CMTX does not exert an independent influence on the prognosis of childhood ALL.


Assuntos
Metotrexato , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Metotrexato/efeitos adversos , Antimetabólitos Antineoplásicos/efeitos adversos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Prognóstico
14.
Pediatr Hematol Oncol ; 41(1): 1-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37452625

RESUMO

Severe sepsis and septic shock are life-threatening for pediatric hematology and oncology patient receiving chemotherapy. Th1/Th2 cytokines, C-reactive protein (CRP), and procalcitonin (PCT) are all thought to be associated with disease severity. The aim of this study was to prospectively verify the utility of Th1/Th2 cytokines and compare them with PCT and CRP in the prediction of adverse outcomes. Data on patients were collected from January 1, 2011, to December 31, 2020. Blood samples were taken for Th1/Th2 cytokine, CRP, and PCT measurements at the initial onset of infection. Severe infection (SI) was defined as severe sepsis or septic shock. Th1/Th2 cytokine levels were determined by using flow cytometric bead array technology. In total, 7,735 febrile episodes were included in this study. For SI prediction, the AUCs of IL-6, IL-10 and TNF-α were 0.814, 0.805 and 0.624, respectively, while IL-6 and IL-10 had high sensitivity and specificity. IL-6 > 220.85 pg/ml and IL-10 > 29.95 pg/ml had high odds ratio (OR) values of approximately 3.5 in the logistic regression. Within the subgroup analysis, for bloodstream infection (BSI) prediction, the AUCs of IL-10 and TNF-α were 0.757 and 0.694, respectively. For multiorgan dysfunction syndrome (MODS) prediction, the AUC of CRP was 0.606. The AUC of PCT for mortality prediction was 0.620. In conclusion, IL-6 and IL-10 provide good predictive value for the diagnosis of SI. For children with SI, IL-10 and TNF-α are associated with BSI, while CRP and PCT are associated with MODS and death, respectively.


Assuntos
Hematologia , Neoplasias , Sepse , Choque Séptico , Criança , Humanos , Pró-Calcitonina , Citocinas , Proteína C-Reativa , Interleucina-10 , Interleucina-6 , Fator de Necrose Tumoral alfa , Biomarcadores
15.
Environ Sci Pollut Res Int ; 31(5): 7167-7178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157170

RESUMO

Kitchen waste was mainly composed of carbohydrates, lipids, and proteins. Anaerobic digestion (AD) of kitchen waste usually occurred acidification and further deteriorated. In our previous study, alkali pretreatment combined with bentonite (AP/Be) treatment was proved to enhance high solid AD of kitchen waste. However, effects of AP time on AP/Be were not yet studied. This study investigated the effects of AP time on AP/Be treatment on enhancing high solid AD. The results showed that compared with the control group, the cumulative methane production rate could be increased by 3.30 times (149.7 mL CH4/g VS) and the volatile solids (VS) reduction rate increased by 63.36%. Microbial community analysis showed that the relative abundance of Methanosarcina and Methanosaeta were increased from 6.49 and 7.83% to 47.14 and 16.39% respectively. Predictive functional analysis showed that AP/Be treatment increased the abundance of energy production and conversion, coenzyme transport, and metabolism. This study revealed the potential mechanism of AP/Be enhanced kitchen waste AD performance and AP/Be was a potential strategy to strengthen AD.


Assuntos
Bentonita , Microbiota , Anaerobiose , Álcalis , Reatores Biológicos , Metano , Esgotos
16.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139164

RESUMO

Glycyrol (GC) is one natural active product. Imiquimod-induced psoriasis-like Balb/c mouse models were established. The model mice were intraperitoneally injected with cyclosporine A (CsA) and GC for 8 days followed by a series of biological detections. GC had little toxicity according to the levels of peripheral blood cells, hemoglobin, blood urea nitrogen (BUN), and serum creatinine (CRE), while CsA significantly increased the levels of BUN and CRE. GC decreased the splenic index and reduced the expressions of IL-6, IL-23, and CXCL-3 in the model mice and IL-6, CXCL-1, and CXCL-2 in the inflammatory HaCaT cells. The half inhibition concentration (IC50) of GC on HaCaT cells was 29.72 µmol/L, resulting in improved apoptosis, enhanced expressions of p21, BAX, and BIK, and reduced expressions of BCL-2. GC is an immunosuppressive agent against psoriasis-like symptoms by anti-inflammatory effects, which provides a strategy for the discovery of anti-psoriatic natural products.


Assuntos
Dermatite , Psoríase , Camundongos , Animais , Interleucina-6/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Dermatite/metabolismo , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Imunossupressores/efeitos adversos , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Pele/metabolismo , Citocinas/metabolismo
17.
BMC Cancer ; 23(1): 840, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679666

RESUMO

Head neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors which ranks the sixth incidence in the world. Although treatments for HNSCC have improved significantly in recent years, its recurrence rate and mortality rate remain high. Myosin genes have been studied in a variety of tumors, however its role in HNSCC has not been elucidated. GSE58911 and GSE30784 gene expression profile analysis were performed to detect significantly dys-regulated myosin genes in HNSCC. The Cancer Genome Atlas (TCGA) HNSCC database was used to verify the dys-regulated myosin genes and study the relationship between these genes and prognosis in HNSCC. The results showed that MYL1, MYL2, MYL3, MYH2, and MYH7 were down-regulated, while MYH10 was up-regulated in patients with HNSCC. Interestingly, MYL1, MYL2, MYH1, MYH2, and MYH7 were shown to be unfavorable prognostic markers in HNSCC. It is also worth noting that MYL1 was a specific unfavorable prognostic biomarker in HNSCC. MYL1, MYL2, MYL3, MYH2, MYH7, and MYH10 promoted CD4 + T cells activation in HNSCC. MYL1 was proved to be down-regulated in HNSCC tissues compared to normal tissues at protein levels. MYL1 overexpression had no effect on proliferation, but significantly promoted migration of Fadu cells. MYL1 increased EGF and EGFR protein expression levels. Moreover, there is a positive correlation between MYL1 expression and Tcm CD8 cells, Tcm CD4 + cells, NK cells, Mast cells, NKT cells, Tfh cells and Treg cells in HNSCC. Overall, MYL1 facilitates tumor metastasis and correlates with tumor immune infiltration in HNSCC and these effects may be associated with the EGF/EGFR pathway.


Assuntos
Neoplasias de Cabeça e Pescoço , Segunda Neoplasia Primária , Humanos , Biomarcadores , Fator de Crescimento Epidérmico , Receptores ErbB , Neoplasias de Cabeça e Pescoço/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
18.
Tob Induc Dis ; 21: 99, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529669

RESUMO

INTRODUCTION: Both cigarette smoking and gut microbiota play important roles in colorectal carcinogenesis. We explored whether the association between smoking and colorectal cancer (CRC) risk varies by gut microbial enterotypes and how smoking-related enterotypes promote colorectal carcinogenesis. METHODS: A case-control study was conducted. Fecal microbiota was determined by 16S rDNA sequencing. The cases with CRC or adenoma were subclassified by gut microbiota enterotypes. Multivariate analyses were used to test associations between smoking and the odds of colorectal neoplasm subtypes. Mann-Whitney U tests were used to find differential genera, genes, and pathways between the subtypes. RESULTS: Included in the study were 130 CRC patients (type I: n=77; type II: n=53), 120 adenoma patients (type I: n=66; type II: n=54), and 130 healthy participants. Smoking increased the odds for type II tumors significantly (all p for trend <0.05) but not for type I tumors. The associations of smoking with increased odds of colorectal neoplasm significantly differed by gut microbiota enterotypes (p<0.05 for heterogeneity). An increase in carcinogenic bacteria (genus Escherichia shigella) and a decrease in probiotics (family Lachnospiraceae and Ruminococcaceae) in type II tumors may drive disease progression by upregulating oncogenic signaling pathways and inflammatory/oxidative stress response pathways, as well as protein phospholipase D1/2, cytochrome C, and prostaglandin-endoperoxide synthase 2 expression. CONCLUSIONS: Smoking was associated with a higher odds of type II colorectal neoplasms but not type I tumors, supporting a potential role for the gut microbiota in mediating the association between smoking and colorectal neoplasms.

19.
Cell Death Discov ; 9(1): 291, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558683

RESUMO

Radiotherapy resistance is an important and urgent challenge in the clinical management of esophageal squamous carcinoma (ESCC). However, the factors mediating the ESCC resistance to radiotherapy and its underlying molecular mechanisms are not fully clarified. Our previous studies have demonstrated the critical role of DNA polymerase iota (POLI) in ESCC development and progression, here, we aimed to investigate the involvement of POLI in ESCC radiotherapy resistance and elucidate the underlying molecular mechanism. We found that highly expressed POLI was correlated with shorter overall survival of ESCC patients received radiotherapy. Down-regulation of POLI sensitized ESCC to IR, prolonged γH2AX foci in nuclei and comet tails after IR. HR but not NHEJ repair is inhibited in POLI-deficient ESCC cells. POLI stabilizes RAD51 protein via competitively binding with and blocking the interaction between RAD51 and E3 ligase XIAP and XIAP-mediated ubiquitination. Furthermore, loss of POLI leads to the activation of GAS signaling. Our findings provide novel insight into the role of POLI in the development of radioresistance mediated by stabilizing RAD51 protein in ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA