Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Int J Biol Macromol ; 271(Pt 2): 132481, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763233

RESUMO

A burgeoning interest has recently focused on the development of nanomedicine to integrate noninvasive photothermal therapy (PTT) and chemodynamic therapy (CDT) for synergistic tumor treatments, owing to PTT's amplification effect on CDT. However, challenges emerge as hyperthermia often induces an unwarranted overexpression of cytoprotective heat shock proteins (HSPs), thereby curtailing PTT efficacy. Additionally, the nearly neutral tumor intracellular pH (pHi ≈ 7.2) that handicaps the Fenton reaction poses a leading limitation to CDT. Addressing these hurdles, we introduce EVP, a nanomedicine developed through the straightforward assembly of epigallocatechin gallate (EGCG), vanadium sulfate (VOSO4), and Pluronic F-127 (PF127). EVP comprehensively downregulates overexpressed HSPs (HSP 60, 70, 90) through the collaborative action of EGCG and vanadyl (VO2+). Moreover, the tumor intracellular pH-processed Fenton-like reaction by VO2+ ensures highly efficient hydroxyl radicals (OH) production in cytosols, overcoming the stringent acidity requirement for CDT. Additionally, the hyperthermia induced by PTT augments OH production, further enhancing CDT efficacy. In vitro and in vivo experiments validate EVP's excellent biocompatibility and potent tumor inhibition, highlighting its substantial potential in tumor therapy.

2.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464258

RESUMO

The modern armamentarium for cancer treatment includes immunotherapy and targeted therapy, such as protein kinase inhibitors. However, the mechanisms that allow cancer-targeting drugs to effectively mobilize dendritic cells (DCs) and affect immunotherapy are poorly understood. Here, we report that among shared gene targets of clinically relevant protein kinase inhibitors, high PIKFYVE expression was least predictive of complete response in patients who received immune checkpoint blockade (ICB). In immune cells, high PIKFYVE expression in DCs was associated with worse response to ICB. Genetic and pharmacological studies demonstrated that PIKfyve ablation enhanced DC function via selectively altering the alternate/non-canonical NF-κB pathway. Both loss of Pikfyve in DCs and treatment with apilimod, a potent and specific PIKfyve inhibitor, restrained tumor growth, enhanced DC-dependent T cell immunity, and potentiated ICB efficacy in tumor-bearing mouse models. Furthermore, the combination of a vaccine adjuvant and apilimod reduced tumor progression in vivo. Thus, PIKfyve negatively controls DCs, and PIKfyve inhibition has promise for cancer immunotherapy and vaccine treatment strategies.

3.
Cell Rep ; 43(3): 113942, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38489266

RESUMO

Tumor-associated macrophages (TAMs) shape tumor immunity and therapeutic efficacy. However, it is poorly understood whether and how post-translational modifications (PTMs) intrinsically affect the phenotype and function of TAMs. Here, we reveal that peptidylarginine deiminase 4 (PAD4) exhibits the highest expression among common PTM enzymes in TAMs and negatively correlates with the clinical response to immune checkpoint blockade. Genetic and pharmacological inhibition of PAD4 in macrophages prevents tumor progression in tumor-bearing mouse models, accompanied by an increase in macrophage major histocompatibility complex (MHC) class II expression and T cell effector function. Mechanistically, PAD4 citrullinates STAT1 at arginine 121, thereby promoting the interaction between STAT1 and protein inhibitor of activated STAT1 (PIAS1), and the loss of PAD4 abolishes this interaction, ablating the inhibitory role of PIAS1 in the expression of MHC class II machinery in macrophages and enhancing T cell activation. Thus, the PAD4-STAT1-PIAS1 axis is an immune restriction mechanism in macrophages and may serve as a cancer immunotherapy target.


Assuntos
Hidrolases , Processamento de Proteína Pós-Traducional , Camundongos , Animais , Desiminases de Arginina em Proteínas/metabolismo , Proteína-Arginina Desiminase do Tipo 4/genética , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Hidrolases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Macrófagos/metabolismo
4.
Exp Hematol Oncol ; 13(1): 26, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429828

RESUMO

A drug conjugate consists of a cytotoxic drug bound via a linker to a targeted ligand, allowing the targeted delivery of the drug to one or more tumor sites. This approach simultaneously reduces drug toxicity and increases efficacy, with a powerful combination of efficient killing and precise targeting. Antibody‒drug conjugates (ADCs) are the best-known type of drug conjugate, combining the specificity of antibodies with the cytotoxicity of chemotherapeutic drugs to reduce adverse reactions by preferentially targeting the payload to the tumor. The structure of ADCs has also provided inspiration for the development of additional drug conjugates. In recent years, drug conjugates such as ADCs, peptide‒drug conjugates (PDCs) and radionuclide drug conjugates (RDCs) have been approved by the Food and Drug Administration (FDA). The scope and application of drug conjugates have been expanding, including combination therapy and precise drug delivery, and a variety of new conjugation technology concepts have emerged. Additionally, new conjugation technology-based drugs have been developed in industry. In addition to chemotherapy, targeted therapy and immunotherapy, drug conjugate therapy has undergone continuous development and made significant progress in treating lung cancer in recent years, offering a promising strategy for the treatment of this disease. In this review, we discuss recent advances in the use of drug conjugates for lung cancer treatment, including structure-based drug design, mechanisms of action, clinical trials, and side effects. Furthermore, challenges, potential approaches and future prospects are presented.

5.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387144

RESUMO

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Assuntos
Glutationa S-Transferase pi , Urânio , Adulto , Humanos , Glutationa S-Transferase pi/genética , Radiação Ionizante , Raios gama/efeitos adversos , Apoptose
6.
Adv Sci (Weinh) ; 11(13): e2306685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286660

RESUMO

Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/metabolismo , Resistência à Insulina/genética , Macrófagos/metabolismo , Obesidade/metabolismo
7.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38134636

RESUMO

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Assuntos
MicroRNAs , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator Inibidor de Leucemia/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Linfócitos B
8.
Artigo em Inglês | MEDLINE | ID: mdl-37866886

RESUMO

BACKGROUND: Resveratrol is a polyphenolic phytoalexin which has the properties of anti-oxidant, anti-inflammatory and anti-fibrotic effects. The aim of this study was to investigate the anti-fibrotic effects of resveratrol in primary human pterygium fibroblasts (HPFs) and elucidate the underlying mechanisms. METHOD: Profibrotic activation was induced by transforming growth factor-beta1 (TGF-ß1). The expression of profibrotic markers, including type 1 collagen (COL1), α-smooth muscle actin (α-SMA), and fibronectin, were detected by western blot and quantitative real-time-PCR after treatment with various concentrations of resveratrol in HPFs to investigate the anti-fibrotic effects. Relative signaling pathways downstream of TGF-ß1 were detected by Western blot to assess the underlying mechanism. Cell viability and apoptosis were assessed using CCK-8 assay and flow cytometry to evaluate proliferation and drug-induced cytotoxicity. Cell migration and contractile phenotype were detected through wound healing assay and collagen gel contraction assay. RESULTS: The expression of α-SMA, FN and COL1 induced by TGF-ß1 were suppressed by treatment with resveratrol in dose-dependent manner. The Smad3, mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol-3-kinase (PI3K) / protein kinase B (AKT) pathways were activated by TGF-ß1, while resveratrol attenuated those pathways. Resveratrol also inhibited cellular proliferation, migration and contractile phenotype, and induced apoptosis in HPFs. CONCLUSIONS: Resveratrol inhibit TGF-ß1-induced myofibroblast activation and extra cellular matrix synthesis in HPFs, at least partly, by regulating the TGF-ß/Smad3, p38 MAPK and PI3K/AKT pathways.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Pterígio , Resveratrol , Humanos , Células Cultivadas , Fibroblastos , Fibrose , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pterígio/tratamento farmacológico , Resveratrol/farmacologia , Fator de Crescimento Transformador beta1/farmacologia
9.
Cancer Cell Int ; 23(1): 222, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37775731

RESUMO

According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.

10.
Physiol Mol Biol Plants ; 29(7): 947-957, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37649883

RESUMO

The expression of the soybean Bowman-Birk proteinase isoinhibitor DII (BBI-DII) gene and the inducible activity of its promoter were studied under salt, drought, low temperature, and abscisic acid (ABA) exposure conditions. The BBI-DII gene was induced by salt, drought, low temperature, and ABA, and the relative expression levels were 103.09-, 107.01-, 17.25- and 27.24-fold, respectively, compared with the untreated control. The putative promoter, designated BP1 (- 1255 to + 872 bp), located 5'-upstream of the BBI-DII gene was cloned. The expression of the GUS gene in pCAM-BP1 transgenic tobacco plants was highest at 5 h after treatment with salt, drought, low temperature and ABA, especially under salt and drought. Using histochemical staining and fluorescence analysis of GUS, BP1 activity under salt and drought conditions after 5 h was 1.03 and 1.07-fold, respectively, compared with that of the CaMV35S promoter. Based on a 5' deletion analysis, the segment (+ 41 to + 474 bp) was the basal region that responded to salt and drought, whereas the segment (- 820 to + 41 bp) was the area that responded to increased salt and drought activity. The BP2 (- 820 to + 872) activities were 0.98- and 1.02-fold compared with that of BP1 under salt and drought conditions and was 435 bp shorter than BP1. The salt- and drought-inducible activities of the BP2 promoter in the roots, stems, and leaves of transgenic tobacco plants were stable. Taken together, BP2 is more suitable than the BP1 promoter for the study and molecular breeding of stress-resistant soybean plants.

11.
Exp Hematol Oncol ; 12(1): 66, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501090

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) posed an unprecedented challenge on public health systems. Despite the measures put in place to contain it, COVID-19 is likely to continue experiencing sporadic outbreaks for some time, and individuals will remain susceptible to recurrent infections. Chimeric antigen receptor (CAR)-T recipients are characterized by durable B-cell aplasia, hypogammaglobulinemia and loss of T-cell diversity, which lead to an increased proportion of severe/critical cases and a high mortality rate after COVID-19 infection. Thus, treatment decisions have become much more complex and require greater caution when considering CAR T-cell immunotherapy. Hence, we reviewed the current understanding of COVID-19 and reported clinical experience in the management of COVID-19 and CAR-T therapy. After a panel discussion, we proposed a rational procedure pertaining to CAR-T recipients with the aim of maximizing the benefit of CAR-T therapy in the post COVID-19 pandemic era.

12.
Environ Res ; 229: 115947, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080277

RESUMO

According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.


Assuntos
Microbioma Gastrointestinal , Humanos , Bactérias , Radiação Ionizante
13.
Adv Healthc Mater ; 12(18): e2300054, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977362

RESUMO

To overcome the limitations of doxorubicin (DOX) chemotherapy, nanomedicines that integrate additional photothermal therapy (PTT) and chemodynamic therapy (CDT) strategies are highlighted as promising alternatives for the treatment of malignant tumors. However, time-consuming preparation processes, biosafety concerns, and the bottlenecks of individual therapeutic modalities often limit the practical applications of this strategy. To address these issues, this work designs an oxygen economizer that additionally serves as a Fenton reaction amplifier through the simple assembly of epigallocatechin gallate (EGCG), pluronic F-127 (PF127), iron (III) ions, and doxorubicin (DOX) for the enhancement of synergistic PTT/CDT/chemotherapy. The resulting nanoformulation, EFPD, can target mitochondria and inhibit cell respiration to reduce O2 consumption, thus boosting DOX-mediated H2 O2 generation for enhanced CDT and simultaneously improving hypoxia-limited DOX chemotherapy efficacy. Moreover, the coordination between EGCG and Fe3+ provides EFPD with excellent photothermal conversion efficiencies (η = 34.7%) for PTT and photothermal-accelerated drug release. Experimental results indicate that EFPD-mediated synergistic enhancement of PTT/CDT/chemotherapy can achieve excellent therapeutic outcomes, including enhanced ablation of solid tumors, reduced metastasis and cardiotoxicity, and extended life spans.


Assuntos
Doxorrubicina , Nanopartículas , Neoplasias , Humanos , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Peróxido de Hidrogênio , Hipóxia , Ferro , Metais , Neoplasias/terapia , Oxigênio , Terapia Fototérmica , Sinergismo Farmacológico
14.
Neuropharmacology ; 227: 109443, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709909

RESUMO

P2X3 receptors and group II metabotropic glutamate receptors (mGluRs) have been found to be expressed in primary sensory neurons. P2X3 receptors participate in a variety of pain processes, while the activation of mGluRs has an analgesic effect. However, it's still unclear whether there is a link between them in pain. Herein, we reported that the group II mGluR activation inhibited the electrophysiological activity of P2X3 receptors in rat dorsal root ganglia (DRG) neurons. Group II mGluR agonist LY354740 concentration-dependently decreased P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in DRG neurons. LY354740 significantly suppressed the maximum response of P2X3 receptor to α,ß-meATP, but did not change their affinity. Inhibition of ATP currents by LY354740 was blocked by the group II mGluR antagonist LY341495, also prevented by the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the cAMP analog 8-Br-cAMP, or the protein kinase A (PKA) inhibitor H-89. Moreover, LY354740 decreased α,ß-meATP-induced membrane potential depolarization and action potential bursts in DRG neurons. Finally, intraplantar injection of LY354740 also relieved α,ß-meATP-induced spontaneous nociceptive behaviors and mechanical allodynia in rats by activating peripheral group Ⅱ mGluRs. These results indicated that peripheral group II mGluR activation inhibited the functional activity of P2X3 receptors via a Gi/o protein and cAMP/PKA signaling pathway in rat DRG neurons, which revealed a novel mechanism underlying analgesic effects of peripheral group II mGluRs. This article is part of the Special Issue on "Purinergic Signaling: 50 years".


Assuntos
Receptores de Glutamato Metabotrópico , Ratos , Animais , Receptores de Glutamato Metabotrópico/metabolismo , Gânglios Espinais/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Dor/metabolismo , Neurônios , Trifosfato de Adenosina/metabolismo , Analgésicos/farmacologia
15.
Cancer Cell ; 41(2): 304-322.e7, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638784

RESUMO

Immune checkpoint blockade (ICB) can produce durable responses against cancer. We and others have found that a subset of patients experiences paradoxical rapid cancer progression during immunotherapy. It is poorly understood how tumors can accelerate their progression during ICB. In some preclinical models, ICB causes hyperprogressive disease (HPD). While immune exclusion drives resistance to ICB, counterintuitively, patients with HPD and complete response (CR) following ICB manifest comparable levels of tumor-infiltrating CD8+ T cells and interferon γ (IFNγ) gene signature. Interestingly, patients with HPD but not CR exhibit elevated tumoral fibroblast growth factor 2 (FGF2) and ß-catenin signaling. In animal models, T cell-derived IFNγ promotes tumor FGF2 signaling, thereby suppressing PKM2 activity and decreasing NAD+, resulting in reduction of SIRT1-mediated ß-catenin deacetylation and enhanced ß-catenin acetylation, consequently reprograming tumor stemness. Targeting the IFNγ-PKM2-ß-catenin axis prevents HPD in preclinical models. Thus, the crosstalk of core immunogenic, metabolic, and oncogenic pathways via the IFNγ-PKM2-ß-catenin cascade underlies ICB-associated HPD.


Assuntos
Neoplasias , beta Catenina , Animais , Linfócitos T CD8-Positivos , Fator 2 de Crescimento de Fibroblastos , Neoplasias/terapia , Neoplasias/patologia , Progressão da Doença , Interferon gama , Imunoterapia/métodos
16.
Hepatology ; 78(5): 1492-1505, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36680394

RESUMO

BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Osteopontina , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fibrose , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Osteopontina/genética , Osteopontina/metabolismo
17.
Mol Neurobiol ; 59(11): 7025-7035, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36074232

RESUMO

Purinergic signaling is involved in multiple pain processes. P2X3 receptor is a key target in pain therapeutics, while A1 adenosine receptor signaling plays a role in analgesia. However, it remains unclear whether there is a link between them in pain. The present results showed that the A1 adenosine receptor agonist N6-cyclopentyladenosine (CPA) concentration dependently suppressed P2X3 receptor-mediated and α,ß-methylene-ATP (α,ß-meATP)-evoked inward currents in rat dorsal root ganglion (DRG) neurons. CPA significantly decreased the maximal current response to α,ß-meATP, as shown a downward shift of the concentration-response curve for α,ß-meATP. CPA suppressed ATP currents in a voltage-independent manner. Inhibition of ATP currents by CPA was completely prevented by the A1 adenosine receptor antagonist KW-3902, and disappeared after the intracellular dialysis of either the Gi/o protein inhibitor pertussis toxin, the adenylate cyclase activator forskolin, or the cAMP analog 8-Br-cAMP. Moreover, CPA suppressed the membrane potential depolarization and action potential bursts, which were induced by α,ß-meATP in DRG neurons. Finally, CPA relieved α,ß-meATP-induced nociceptive behaviors in rats by activating peripheral A1 adenosine receptors. These results indicated that CPA inhibited the activity of P2X3 receptors in rat primary sensory neurons by activating A1 adenosine receptors and its downstream cAMP signaling pathway, revealing a novel peripheral mechanism underlying its analgesic effect.


Assuntos
Gânglios Espinais , Receptores Purinérgicos P2X3 , Adenosina/metabolismo , Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Adenilil Ciclases/metabolismo , Analgésicos/farmacologia , Animais , Colforsina/farmacologia , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Dor/metabolismo , Toxina Pertussis/metabolismo , Toxina Pertussis/farmacologia , Agonistas do Receptor Purinérgico P1/metabolismo , Agonistas do Receptor Purinérgico P1/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Ratos , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2X3/metabolismo
18.
Arch Pharm Res ; 45(8): 558-571, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35951164

RESUMO

Sometimes, people can be exposed to moderate or high doses of radiation accidentally or through the environment. Radiation can cause great harm to several systems within organisms, especially the hematopoietic system. Several types of drugs protect the hematopoietic system against radiation damage in different ways. They can be classified as "synthetic drugs" and "natural compounds." Their cellular mechanisms to protect organisms from radiation damage include free radical-scavenging, anti-oxidation, reducing genotoxicity and apoptosis, and alleviating suppression of the bone marrow. These topics have been reviewed to provide new ideas for the development and research of drugs alleviating radiation-induced damage to the hematopoietic system.


Assuntos
Sistema Hematopoético , Protetores contra Radiação , Apoptose , Medula Óssea , Dano ao DNA , Humanos , Oxirredução , Protetores contra Radiação/farmacologia , Protetores contra Radiação/uso terapêutico
19.
Genes Dis ; 9(3): 717-730, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35782977

RESUMO

Glioblastoma (GBM, WHO grade IV glioma) is the most common and lethal malignant brain tumor in adults with a dismal prognosis. The extracellular matrix (ECM) supports GBM progression by promoting tumor cell proliferation, migration, and immune escape. Uridine diphosphate (UDP)-glucose 6-dehydrogenase (UGDH) is the rate-limiting enzyme that catalyzes the biosynthesis of glycosaminoglycans that are the principal component of the CNS ECM. We investigated how targeting UGDH in GBM influences the GBM immune microenvironment, including tumor-associated microglia/macrophages (TAMs) and T cells. TAMs are the main immune effector cells in GBM and can directly target tumor cells if properly activated. In co-cultures of GBM cells and human primary macrophages, UGDH knockdown in GBM cells promoted macrophage phagocytosis and M1-like polarization. In orthotropic human GBM xenografts and syngeneic mouse glioma models, targeting UGDH decreased ECM deposition, increased TAM phagocytosis marker expression, reduced M2-like TAMs and inhibited tumor growth. UGDH knockdown in GBM cells also promoted cytotoxic T cell infiltration and activation in orthotopic syngeneic mouse glioma models. The potent and in-human-use small molecule GAG synthesis inhibitor 4-methylumbelliferone (4-MU) was found to inhibit GBM cell proliferation and migration in vitro, mimic the macrophage and T-cell responses to UGDH knockdown in vitro and in vivo and inhibit growth of orthotopic murine GBM. Our study shows that UGDH supports GBM growth through multiple mechanisms and supports the development of ECM-based therapeutic strategies to simultaneously target tumor cells and their microenvironment.

20.
Oncol Lett ; 24(2): 278, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35814829

RESUMO

As the risk of harmful environmental exposure is increasing, it is important to find suitable targets for the diagnosis and treatment of the diseases caused. Isocitrate dehydrogenase 2 (IDH2) is an enzyme located in the mitochondria; it plays an important role in numerous cell processes, including maintaining redox homeostasis, participating in the tricarboxylic acid cycle and indirectly taking part in the transmission of the oxidative respiratory chain. IDH2 mutations promote progression in acute myeloid leukemia, glioma and other diseases. The present review mainly summarizes the role and mechanism of IDH2 with regard to the biological effects, such as the mitophagy and apoptosis of animal or human cells, caused by environmental pollution such as radiation, heavy metals and other environmental exposure factors. The possible mechanisms of these biological effects are described in terms of IDH2 expression, reduced nicotine adenine dinucleotide phosphate content and reactive oxygen species level, among other variables. The impact of environmental pollution on human health is increasingly attracting attention. IDH2 may therefore become useful as a potential diagnostic and therapeutic target for environmental exposure-induced diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA